论文标题
在骨髓bogoliubov激发上挤压引起的拓扑间隙开口
Squeezing-induced Topological Gap Opening on Bosonic Bogoliubov Excitations
论文作者
论文摘要
我们研究了挤压相互作用在诱导骨系统的拓扑bogoliubov激发中的作用。我们引入了一种挤压转换,能够将相应的Bogoliubov-De Gennes Hamiltonian降低到有效的与光谱和拓扑的无相互作用中。在弱相互作用极限中,我们将摄动理论应用于骨骼Bogoliubov激发上的挤压诱导的拓扑间隙开口,发现挤压相互作用在有效的汉密尔顿中作为旋转轨道或Zeeman样耦合起着等效的作用。因此,我们将这种形式主义应用于两个存在的模型,以提供对其拓扑结构的更深入的理解。我们还基于优雅的Clifford代数来构建最小模型,以实现骨拓扑bogoliubov激发。我们的构建可能适用于骨系统中的实验。
We investigate the role of squeezing interaction in inducing topological Bogoliubov excitations of a bosonic system. We introduce a squeezing transformation which is capable of reducing the corresponding Bogoliubov-de Gennes Hamiltonian to an effective non-interacting one with the spectra and topology unchanged. In the weak interaction limit, we apply the perturbation theory to investigate the squeezing-induced topological gap opening on bosonic Bogoliubov excitations and find that the squeezing interaction plays an equivalent role as a spin-orbit or Zeeman-like coupling in the effective Hamiltonian. We thus apply this formalism to two existed models for providing deeper understandings of their topological structures. We also construct minimal models based on the elegant Clifford algebra for realizing bosonic topological Bogoliubov excitations. Our construction is potentially applicable for experiments in bosonic systems.