论文标题

利益行为乘法网络用于资源有限的建议

Interest-Behaviour Multiplicative Network for Resource-limited Recommendation

论文作者

Wu, Qianliang, Zhang, Tong, Cui, Zhen, Yang, Jian

论文摘要

资源约束,例如产品库存或财务实力有限,可能会影响消费者在某些推荐任务中的选择或偏好,但通常在以前的建议方法中被忽略。在本文中,我们旨在在资源有限的推荐任务中挖掘用户偏好的提示,以此为目的,我们专门构建了具有资源限制特征的大型二手车交易数据集。因此,我们提出了一个兴趣行为的乘法网络,以根据用户和项目之间的动态连接来预测用户的未来交互。为了动态地描述用户项目的连接,引入了相互回复的复发性神经网络(MRRNN)以捕获交互式的长期依赖性,并获得了用户和项目的有效表示。为了进一步考虑资源限制,建立了一个资源有限的分支,以专门探索资源变化对用户偏好的影响。最后,引入相互信息以衡量用户动作和融合功能之间的相似性,以预测未来的交互,其中融合功能来自MRRNNS和资源有限分支。我们测试了已建造的二手车交易数据集以及TMALL数据集的性能,实验结果验证了我们框架的有效性。

Resource constraints, e.g. limited product inventory or financial strength, may affect consumers' choices or preferences in some recommendation tasks but are usually ignored in previous recommendation methods. In this paper, we aim to mine the cue of user preferences in resource-limited recommendation tasks, for which purpose we specifically build a large used car transaction dataset possessing resource-limitation characteristics. Accordingly, we propose an interest-behavior multiplicative network to predict the user's future interaction based on dynamic connections between users and items. To describe the user-item connection dynamically, mutually-recursive recurrent neural networks (MRRNNs) are introduced to capture interactive long-term dependencies, and meantime effective representations of users and items are obtained. To further take the resource limitation into consideration, a resource-limited branch is built to specifically explore the influence of resource variation on user preferences. Finally, mutual information is introduced to measure the similarity between the user action and fused features to predict future interaction, where the fused features come from both MRRNNs and resource-limited branches. We test the performance on the built used car transaction dataset as well as the Tmall dataset, and the experimental results verify the effectiveness of our framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源