论文标题

适应性扰动理论在强耦合双谐波振荡器系统中的应用

The application of adaptive perturbation theory in strongly coupled double harmonic oscillator system

论文作者

Guo, Xin

论文摘要

适应性扰动理论的想法是将哈密顿量分为可解决的部分和扰动部分。可解决的部分包含来自相互作用项的非相互作用扇区和Fock空间的对角线元素。扰动项是Fock空间的非对角线部门。因此,扰动参数不是耦合常数。这与以前的扰动方法的标准过程不同。在这封信中,我们使用自适应扰动理论来提取强耦合的双谐波振荡器系统中的可解决元素,并获得可解决方案的能量谱。然后,我们将哈密顿量对角线化以获得数值溶液。为了研究在强耦合双谐波振荡器系统中自适应扰动理论的准确性,我们证明了来自领先顺序和二阶扰动的分析研究。前阶和数值解之间的偏差表明,随着准粒子数字N1和N2之间的差距减小,或耦合常数$λ$的增加,双谐波振荡器系统和数字解决方案的强耦合区域中精确求解区域之间的差距变得更小。总体而言,数值差距约为1%至3%,这不是一个不好的结果。当N1不等于N2时,二阶的值非常接近数值解。在大多数情况下,偏差小于1%,这意味着自适应扰动理论对强耦合场中的双谐波振荡器系统有效。

The idea of adaptive perturbation theory is to divide a Hamiltonian into a solvable part and a perturbation part. The solvable part contains the non-interacting sector and the diagonal elements of Fock space from the interacting terms. The perturbed term is the non-diagonal sector of Fock space. Therefore, the perturbation parameter is not coupling constant. This is different from the standard procedure of previous perturbation method. In this letter, we use the adaptive perturbation theory to extract the solvable elements in the strongly coupled double harmonic oscillator system and obtain the energy spectrum of the solvable part. Then, we diagonalize the Hamiltonian to obtain the numerical solution. In order to study the accuracy of adaptive perturbation theory in the strongly coupled double harmonic oscillator system, we demonstrate the analytical study from the leading order and second-order perturbation. The deviations between the leading-order and the numerical solution show that as the gap between the quasiparticle number n1 and n2 decreases, or the coupling constant $λ$ increases, the gap between the exact solutions in the strongly coupling region of double harmonic oscillator system and the numerical solutions becomes smaller. Overall, the numerical gap is about 1% to 3%, which is not a bad result. The value of the second-order is quite close to the numerical solution when n1 doesn't equal n2. In most cases, the deviation is less than 1%, which means that the adaptive perturbation theory is effective for the double harmonic oscillator system in strong coupling field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源