论文标题

俄罗斯卡问题中无条件安全信息传输的分布式计算观点

A Distributed Computing Perspective of Unconditionally Secure Information Transmission in Russian Cards Problems

论文作者

Rajsbaum, Sergio

论文摘要

考虑到$ a $ a $私人将信息传输到$ b $的公开公告被窃听的$ c $偷听的问题。为了通过确定性协议这样做,必须关联其输入。依赖的输入是使用卡片牌来表示的。有一个公开已知的签名$(a,b,c)$,其中$ n = a + b + c + r $,$ a $获取$ a $卡,$ b $ get $ b $ card,$ c $ c $ get $ c $ c $ cards,来自$ n $卡的甲板。 使用确定性协议,$ a $决定其基于她的手的公告。使用编码理论,约翰逊图和添加数理论的技术,提供了一种受分布式计算理论的启发的新颖观点,以分析$ a $需要发送的信息量,同时阻止$ c $学习她的手的一张卡片。在一个极端情况下,普遍的俄罗斯卡问题,$ b $希望学习所有$ a $ a $的卡,而在另一个方面,$ b $希望学习有关$ a $ a $的手的东西。

The problem of $A$ privately transmitting information to $B$ by a public announcement overheard by an eavesdropper $C$ is considered. To do so by a deterministic protocol, their inputs must be correlated. Dependent inputs are represented using a deck of cards. There is a publicly known signature $(a,b,c)$, where $n = a + b + c + r$, and $A$ gets $a$ cards, $B$ gets $b$ cards, and $C$ gets $c$ cards, out of the deck of $n$ cards. Using a deterministic protocol, $A$ decides its announcement based on her hand. Using techniques from coding theory, Johnson graphs, and additive number theory, a novel perspective inspired by distributed computing theory is provided, to analyze the amount of information that $A$ needs to send, while preventing $C$ from learning a single card of her hand. In one extreme, the generalized Russian cards problem, $B$ wants to learn all of $A$'s cards, and in the other, $B$ wishes to learn something about $A$'s hand.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源