论文标题

洗牌模型中通过虚拟点增强隐私

Privacy Enhancement via Dummy Points in the Shuffle Model

论文作者

Li, Xiaochen, Liu, Weiran, Feng, Hanwen, Huang, Kunzhe, Liu, Jinfei, Ren, Kui, Qin, Zhan

论文摘要

最近提出了换行模型,以解决由于分布式数据随机化而导致的局部差异隐私(LDP)严重效用损失的问题。在洗牌模型中,调整器被用来打破用户身份和上传到数据分析师的消息之间的链接。由于需要引入较少的噪声以实现相同的隐私保证,因此,在此范式之后,保护隐私数据收集的实用性得到了改善。 我们提出转储(\下划线{dum} my- \下划线{p}基于OINT),这是一个在洗牌模型中用于隐私披露直方图估算的框架。转储的核心是\ emph {虚拟毯}的一个新概念,它可以通过在用户方面引入\ textit {Points}并进一步改善Shuffle模型的实用性来增强隐私。我们通过提出两个协议来实例化垃圾场:Puredump和MixDump,并进行全面的实验评估与现有协议进行了将其与现有协议进行比较。实验结果表明,在相同的隐私保证下,(1)所提出的协议在所有现有多消息协议中至少使用3个数量级,沟通效率显着提高; (2)他们实现了竞争力,而唯一已知的协议(Ghazi \ textit {et al。},PMLR 2020)的实用程序比我们的效用更好,我们的实用程序是使用难以脱离的分布,这些分布易受浮点攻击的影响(CCS 2012)。

The shuffle model is recently proposed to address the issue of severe utility loss in Local Differential Privacy (LDP) due to distributed data randomization.In the shuffle model, a shuffler is utilized to break the link between the user identity and the message uploaded to the data analyst. Since less noise needs to be introduced to achieve the same privacy guarantee, following this paradigm, the utility of privacy-preserving data collection is improved. We propose DUMP (\underline{DUM}my-\underline{P}oint-based), a framework for privacy-preserving histogram estimation in the shuffle model. The core of DUMP is a new concept of \emph{dummy blanket}, which enables enhancing privacy by just introducing \textit{points }on the user side and further improving the utility of the shuffle model.We instantiate DUMP by proposing two protocols: pureDUMP and mixDUMP, and conduct a comprehensive experimental evaluation to compare them with existing protocols. The experimental results show that, under the same privacy guarantee, (1) the proposed protocols have significant improvements in communication efficiency over all existing multi-message protocols, by at least 3 orders of magnitude; (2) they achieve competitive utility, while the only known protocol (Ghazi \textit{et al.}, PMLR 2020) having better utility than ours employs hard-to-exactly-sample distributions which are vulnerable to floating-point attacks (CCS 2012).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源