论文标题
有效的Langevin方程,导致非平衡雷利活塞的时间平均速度的偏差较大
Effective Langevin equations leading to large deviation function of time-averaged velocity for a nonequilibrium Rayleigh piston
论文作者
论文摘要
我们研究了可自由移动的活塞的波动动力学,该动力学将无限的圆柱体分离为两个在相同压力但温度不同的区域中填充理想气体颗粒的区域。为了研究活塞的时间平均速度的统计特性,我们长期限制了,我们对时间平均速度的较大偏差函数进行了扰动。然后,我们得出一个无限数量的有效兰格文列方程,产生与原始模型相同的大偏差函数。最后,我们为唯一确定有效模型的形式提供了两种可能性。
We study fluctuating dynamics of a freely movable piston that separates an infinite cylinder into two regions filled with ideal gas particles at the same pressure but different temperatures. To investigate statistical properties of the time-averaged velocity of the piston in the long-time limit, we perturbatively calculate the large deviation function of the time-averaged velocity. Then, we derive an infinite number of effective Langevin equations yielding the same large deviation function as in the original model. Finally, we provide two possibilities for uniquely determining the form of the effective model.