论文标题
弱监督的显着实例检测
Weakly-supervised Salient Instance Detection
论文作者
论文摘要
现有的显着实例检测(SID)方法通常从像素级注释的数据集中学习。在本文中,我们提出了第一种弱监督SID问题的方法。尽管已经考虑了一般显着性检测的弱监督,但它主要基于使用类标签进行对象定位。但是,仅使用类标签来学习实例感知的显着信息是非平凡的,因为具有高语义亲和力的显着实例可能不容易被标签分开。我们注意到,subitizing信息提供了对显着项目数量的即时判断,这些判断自然与检测显着实例有关,并且可以在对同一实例的不同部分进行分组时有助于分离同一类的实例。受这种见解的启发,我们建议将类和将标签用作SID问题的薄弱监督。我们提出了一个具有三个分支的新型弱监督的网络:显着检测分支利用类一致性信息来定位候选对象;边界检测分支,利用类差异信息来描述对象边界;以及使用亚列表信息检测明显实例质心的质心检测分支。此互补信息进一步融合以产生显着实例地图。我们进行了广泛的实验,以证明所提出的方法对根据相关任务改编的精心设计的基线方法有利地发挥作用。
Existing salient instance detection (SID) methods typically learn from pixel-level annotated datasets. In this paper, we present the first weakly-supervised approach to the SID problem. Although weak supervision has been considered in general saliency detection, it is mainly based on using class labels for object localization. However, it is non-trivial to use only class labels to learn instance-aware saliency information, as salient instances with high semantic affinities may not be easily separated by the labels. We note that subitizing information provides an instant judgement on the number of salient items, which naturally relates to detecting salient instances and may help separate instances of the same class while grouping different parts of the same instance. Inspired by this insight, we propose to use class and subitizing labels as weak supervision for the SID problem. We propose a novel weakly-supervised network with three branches: a Saliency Detection Branch leveraging class consistency information to locate candidate objects; a Boundary Detection Branch exploiting class discrepancy information to delineate object boundaries; and a Centroid Detection Branch using subitizing information to detect salient instance centroids. This complementary information is further fused to produce salient instance maps. We conduct extensive experiments to demonstrate that the proposed method plays favorably against carefully designed baseline methods adapted from related tasks.