论文标题

设计通用自适应人工智能系统的有益扰动网络

Beneficial Perturbation Network for designing general adaptive artificial intelligence systems

论文作者

Wen, Shixian, Rios, Amanda, Ge, Yunhao, Itti, Laurent

论文摘要

人脑是自适应学习的黄金标准。它不仅可以从经验中学习和受益,而且可以适应新的情况。相比之下,深度神经网络仅学习一个从输入到输出的复杂但固定的映射。这将其适用性限制在更动态的情况下,其中输入映射可能会随着不同的上下文而发生变化。一个显着的示例是持续学习 - 依次学习新的独立任务,而不会忘记以前的任务。不断学习使用梯度下降的人工神经网络中的多个任务会导致灾难性的遗忘,从而在学习新任务的新映射时会删除以前学习的旧任务映射。在这里,我们提出了一种新的生物学上合理类型的深神经网络,该网络具有额外的,内外,任务依赖的偏置单元,以适应这些动态情况。这首先允许单个网络学习潜在的无限平行输入以输出映射,并在运行时在它们之间进行飞行。通过利用有益的扰动(与众所周知的对抗扰动相反)来对偏置单位进行编程。给定任务的有益扰动将网络偏向该任务,从本质上将网络切换到另一个模式来处理该任务。这在很大程度上消除了任务之间的灾难性干扰。我们的方法是记忆效率和参数效率,可以容纳许多任务,并在不同的任务和域上实现最先进的性能。

The human brain is the gold standard of adaptive learning. It not only can learn and benefit from experience, but also can adapt to new situations. In contrast, deep neural networks only learn one sophisticated but fixed mapping from inputs to outputs. This limits their applicability to more dynamic situations, where input to output mapping may change with different contexts. A salient example is continual learning - learning new independent tasks sequentially without forgetting previous tasks. Continual learning of multiple tasks in artificial neural networks using gradient descent leads to catastrophic forgetting, whereby a previously learned mapping of an old task is erased when learning new mappings for new tasks. Here, we propose a new biologically plausible type of deep neural network with extra, out-of-network, task-dependent biasing units to accommodate these dynamic situations. This allows, for the first time, a single network to learn potentially unlimited parallel input to output mappings, and to switch on the fly between them at runtime. Biasing units are programmed by leveraging beneficial perturbations (opposite to well-known adversarial perturbations) for each task. Beneficial perturbations for a given task bias the network toward that task, essentially switching the network into a different mode to process that task. This largely eliminates catastrophic interference between tasks. Our approach is memory-efficient and parameter-efficient, can accommodate many tasks, and achieves state-of-the-art performance across different tasks and domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源