论文标题
在振荡和异国情调多元宇宙模型中经典演变的临界点的纠缠熵
Entanglement entropy at critical points of classical evolution in oscillatory and exotic singularity multiverse models
论文作者
论文摘要
使用第三量化形式主义,我们研究了标准均匀和各向同性宇宙学框架内成对创建的宇宙的量子纠缠。特别是,我们研究了最大值,最小值和经典进化的拐点周围的纠缠数量(熵,温度)。以前的作品的新颖性是,我们展示了纠缠如何在尺度因子参数的扩展迷你管空间中发生变化,另外是由无质量标量场的参数变化。我们研究了宇宙的纠缠数量,这些宇宙经典表现出大爆炸,除了大爆炸(异国情调的)奇异之处,例如大制动器,大冻结,大冻结,大分离和小核。在考虑到标量场时,我们发现纠缠熵在大爆炸奇异之处是有限的,并且在Maxima或膨胀的最小值处分歧。至于异国情调的奇异性模型,我们发现所有临界点和奇异性中的纠缠熵或温度是有限的或无限的,但它永远不会消失。这表明,一对宇宙的每个宇宙都与测量系统量子性的纠缠量进行了参数。除了冯·诺伊曼(Von Neumann)的纠缠熵外,我们还检查了tsallis和Renyi纠缠熵的行为,并发现它们的行为与量子的仪表相似。最后,我们发现纠缠熵与哈勃参数之间的最佳拟合关系(通常标记宇宙演化的特殊点)是对数形状的,而不是多项式的,正如人们最初可以期望的那样。
Using the 3rd quantization formalism we study the quantum entanglement of universes created in pairs within the framework of standard homogeneous and isotropic cosmology. In particular, we investigate entanglement quantities (entropy, temperature) around maxima, minima and inflection points of the classical evolution. The novelty from previous works is that we show how the entanglement changes in an extended minisuperspace parameterised by the scale factor and additionally, by the massless scalar field. We study the entanglement quantities for the universes which classically exhibit Big-Bang and other than Big-Bang (exotic) singularities such as Big-Brake, Big-Freeze, Big-Separation, and Little-Rip. While taking into account the scalar field, we find that the entanglement entropy is finite at the Big-Bang singularity and diverges at maxima or minima of expansion. As for the exotic singularity models we find that the entanglement entropy or the temperature in all the critical points and singularities is either finite or infinite, but it never vanishes. This shows that each of the universes of a pair is entangled to a degree parametrized by the entanglement quantities which measure the quantumness of the system. Apart from the von Neumann entanglement entropy, we also check the behaviour of the the Tsallis and the Renyi entanglement entropies, and find that they behave similarly as the meters of the quantumness. Finally, we find that the best-fit relation between the entanglement entropy and the Hubble parameter (which classically marks special points of the universe evolution) is of the logarithmic shape, and not polynomial, as one could initially expect.