论文标题

$ \ mathbb {r} $的非Archimedean字段扩展的实值度量

A real-valued measure on non-Archimedean field extensions of $\mathbb{R}$

论文作者

Bottazzi, Emanuele

论文摘要

我们在非架构订购字段$(\ Mathbb {f},<),$(\ Mathbb {r},<)$上引入了一个实值度量$ {m_l} $。 $ {m_l} $的定义是灵感来自鲁滨逊(Robinson)分析框架中无限量的较高现场的测量。实现的$ {m_l} $事实证明,对于每个Lebesgue $ \ Mathbb {f} $中的规范可衡量代表,每个Lebesgue的可测量子集的$ \ Mathbb {r} $,More,More,More,两组的度量相等。此外,$ m_l $它比一类非Archimedean统一措施更具表现力。在$ \ mathbb {f} = \ mathcal {r} $,levi-civita字段的情况下,我们专注于实值度量的属性。特别是,我们将$ {m_l} $与Shamseddine和Berz开发的$ \ Mathcal {R} $上的统一的非架构量度进行了比较,并且我们证明,每当定义后者时,第一个是无限次的接近第二次。我们还为Levi-Civita字段上的函数定义了一个实用值的积分,并证明每个实际连续函数都具有$ \ Mathcal {r} $中的可集成代表。回想一下,对于$ \ Mathcal {r} $,当前的非Archimedean集成是错误的。本文结束了关于通过非架构域上的函数对狄拉克分布表示的讨论。

We introduce a real-valued measure ${m_L}$ on non-Archimedean ordered fields $(\mathbb{F},<)$ that extend the field of real numbers $(\mathbb{R},<)$. The definition of ${m_L}$ is inspired by the Loeb measures of hyperreal fields in the framework of Robinson's analysis with infinitesimals. The real-valued measure ${m_L}$ turns out to be general enough to obtain a canonical measurable representative in $\mathbb{F}$ for every Lebesgue measurable subset of $\mathbb{R}$, moreover, the measure of the two sets is equal. In addition, $m_L$ it is more expressive than a class of non-Archimedean uniform measures. We focus on the properties of the real-valued measure in the case where $\mathbb{F}=\mathcal{R}$, the Levi-Civita field. In particular, we compare ${m_L}$ with the uniform non-Archimedean measure over $\mathcal{R}$ developed by Shamseddine and Berz, and we prove that the first is infinitesimally close to the second, whenever the latter is defined. We also define a real-valued integral for functions on the Levi-Civita field, and we prove that every real continuous function has an integrable representative in $\mathcal{R}$. Recall that this result is false for the current non-Archimedean integration over $\mathcal{R}$. The paper concludes with a discussion on the representation of the Dirac distribution by pointwise functions on non-Archimedean domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源