论文标题

通过深厚的增强学习时间您的树篱时间

Time your hedge with Deep Reinforcement Learning

论文作者

Benhamou, Eric, Saltiel, David, Ungari, Sandrine, Mukhopadhyay, Abhishek

论文摘要

资产经理能否根据市场条件计划其对冲策略的最佳时机?基于Markowitz或其他或多或少复杂的财务规则的标准方法旨在找到最佳的投资组合分配,这要归功于预测的预期收益和风险,但未能将市场条件与对冲策略决策完全联系起来。相比之下,深度强化学习(DRL)可以通过在市场信息和对冲策略分配决策之间创建动态依赖性来应对这一挑战。在本文中,我们提出了一个现实且增强的DRL框架:(i)使用其他上下文信息来决定采取行动,(ii)在观察和行动之间存在一个时期的滞后,以说明一日滞后共同资产经理的滞后滞后,以重新平衡其对冲,(iii)在稳定性和稳健的训练中对重复的培训进行了良好的培训,以备旋转的培训,以换取Reptitive Trains的培训,该培训量相似,固定式培训,锚定方法的固定方法,与锚定方法相似,以固定的培训,以固定的态度训练。 (iv)允许管理我们的对冲策略的杠杆作用。我们对有兴趣对树篱进行调整和计时的增强资产经理的实验表明,我们的方法可实现较高的回报和较低的风险。

Can an asset manager plan the optimal timing for her/his hedging strategies given market conditions? The standard approach based on Markowitz or other more or less sophisticated financial rules aims to find the best portfolio allocation thanks to forecasted expected returns and risk but fails to fully relate market conditions to hedging strategies decision. In contrast, Deep Reinforcement Learning (DRL) can tackle this challenge by creating a dynamic dependency between market information and hedging strategies allocation decisions. In this paper, we present a realistic and augmented DRL framework that: (i) uses additional contextual information to decide an action, (ii) has a one period lag between observations and actions to account for one day lag turnover of common asset managers to rebalance their hedge, (iii) is fully tested in terms of stability and robustness thanks to a repetitive train test method called anchored walk forward training, similar in spirit to k fold cross validation for time series and (iv) allows managing leverage of our hedging strategy. Our experiment for an augmented asset manager interested in sizing and timing his hedges shows that our approach achieves superior returns and lower risk.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源