论文标题
si(100)-2 $ \ times $ 1的原子精度P型掺杂型的模型
A model for atomic precision p-type doping with diborane on Si(100)-2$\times$1
论文作者
论文摘要
Diborane(b $ _2 $ h $ _6 $)是硅原子精度P型掺杂的有前途的分子前体,最近已在实验中证明了[T. T. {Š} kere {ň},\ textit {et al。,}自然电子(2020)]。我们使用密度函数理论(DFT)计算来确定将二曲霉分离为一个物种的反应途径,该物种将吸附到SI上(100)-2 $ \ times $ 1表面后将掺入电动替代硼。我们的计算表明,Diborane必须克服对吸附物的能量屏障,并在室温下解释了实验观察到的低粘性系数($ <10^{-4} $),并建议可以使用加热来提高吸附率。坚持后,Diborane具有$ \ sim 50 \%$将两个BH $ _3 $片段分为两个碎片的机会,而只是失去氢以形成二聚体,例如b $ _2 $ _2 $ h $ _4 $。由于硼二聚体可能是电活动的,因此后一种反应是否显示为掺入速率。解离过程以明显的能屏障进行,因此需要使用高温进行掺入。使用从DFT计算的障碍,我们将动力学蒙特卡洛模型参数化,该模型可预测硼的掺入统计数据,这是初始深度激活几何,剂量,剂量和退火温度的函数。我们的结果表明,Diborane的二聚体性质固有地限制了其作为受体前体的掺杂密度,并且此外,在暴露于硅之前将硼二聚体加热至分裂会导致对氢和卤素的选择性不佳。这表明,尽管二曲霉是原子精度受体前体,但其他非二聚体受体前体可能会在较低温度下导致更高的掺入率。
Diborane (B$_2$H$_6$) is a promising molecular precursor for atomic precision p-type doping of silicon that has recently been experimentally demonstrated [T. {Š}kere{ň}, \textit{et al.,} Nature Electronics (2020)]. We use density functional theory (DFT) calculations to determine the reaction pathway for diborane dissociating into a species that will incorporate as electrically active substitutional boron after adsorbing onto the Si(100)-2$\times$1 surface. Our calculations indicate that diborane must overcome an energy barrier to adsorb, explaining the experimentally observed low sticking coefficient ($< 10^{-4}$ at room temperature) and suggesting that heating can be used to increase the adsorption rate. Upon sticking, diborane has an $\sim 50\%$ chance of splitting into two BH$_3$ fragments versus merely losing hydrogen to form a dimer such as B$_2$H$_4$. As boron dimers are likely electrically inactive, whether this latter reaction occurs is shown to be predictive of the incorporation rate. The dissociation process proceeds with significant energy barriers, necessitating the use of high temperatures for incorporation. Using the barriers calculated from DFT, we parameterize a Kinetic Monte Carlo model that predicts the incorporation statistics of boron as a function of the initial depassivation geometry, dose, and anneal temperature. Our results suggest that the dimer nature of diborane inherently limits its doping density as an acceptor precursor, and furthermore that heating the boron dimers to split before exposure to silicon can lead to poor selectivity on hydrogen and halogen resists. This suggests that while diborane works as an atomic precision acceptor precursor, other non-dimerized acceptor precursors may lead to higher incorporation rates at lower temperatures.