论文标题

自旋绕组的量子流体力学

Quantum hydrodynamics of spin winding

论文作者

Tserkovnyak, Yaroslav, Zou, Ji, Kim, Se Kwon, Takei, So

论文摘要

量子自旋链中的易于平面自旋绕组可被视为沿链的传播数量,但由于相位滑动而具有有限的寿命。在绕组动力学的流体力学公式中,量子连续性方程因横向涡度流而获得源项。后者反映了相位滑倒,并普遍损害了全球保护法。非局部绕组转运的线性反应形式主义将沿着自旋链的绕组流降低到库波响应,并与寄生涡流流横向横向流动。当涡度流渐近地小时,可以回收一维拓扑流体动力学。从微观旋转链制剂开始,我们将重点放在基于重新归一化的正弦戈登方程的绕组传输的渐近行为上,并结合了相滑和吉尔伯特阻尼。提出了一个通用的电气设备来体现这种物理。因此,我们将绕组电导率作为一个有形的概念,可以表征广泛的量子磁体中的低能动力学。

An easy-plane spin winding in a quantum spin chain can be treated as a transport quantity, which propagates along the chain but has a finite lifetime due to phase slips. In a hydrodynamic formulation for the winding dynamics, the quantum continuity equation acquires a source term due to the transverse vorticity flow. The latter reflects the phase slips and generally compromises the global conservation law. A linear-response formalism for the nonlocal winding transport then reduces to a Kubo response for the winding flow along the spin chain, in conjunction with the parasitic vorticity flow transverse to it. One-dimensional topological hydrodynamics can be recovered when the vorticity flow is asymptotically small. Starting with a microscopic spin-chain formulation, we focus on the asymptotic behavior of the winding transport based on the renormalized sine-Gordon equation, incorporating phase slips as well as Gilbert damping. A generic electrical device is proposed to manifest this physics. We thus suggest winding conductivity as a tangible concept that can characterize low-energy dynamics in a broad class of quantum magnets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源