论文标题
Microswimmers的最小耗散定理
Minimum Dissipation Theorem for Microswimmers
论文作者
论文摘要
我们通过在较低的雷诺数下的液体中的刚性表面驱动的主动式微型温度来得出了下限的定理对能量耗散速率的定理。我们表明,对于任何游泳者来说,可以在给定速度处的最小耗散,可以用两个具有不滑动和完美滑移边界的相同形状的被动体的电阻张量表示。为了达到绝对的最小耗散,最佳游泳者需要一个表面速度曲线,该速度对应于完美滑移体周围的流动,以及与无滑动体相对应的推进力密度。使用该定理,我们提出了微武器能量效率的替代定义,与普遍使用的灯光效率不同,它永远无法超过统一。我们通过计算球形游泳者的效率极限来验证理论。
We derive a theorem for the lower bound on the energy dissipation rate by a rigid surface-driven active microswimmer of arbitrary shape in a fluid at low Reynolds number. We show that, for any swimmer, the minimum dissipation at a given velocity can be expressed in terms of the resistance tensors of two passive bodies of the same shape with a no-slip and perfect-slip boundary. To achieve the absolute minimum dissipation, the optimal swimmer needs a surface velocity profile that corresponds to the flow around the perfect-slip body, and a propulsive force density that corresponds to the no-slip body. Using this theorem, we propose an alternative definition of the energetic efficiency of microswimmers that, unlike the commonly-used Lighthill efficiency, can never exceed unity. We validate the theory by calculating the efficiency limits of spheroidal swimmers.