论文标题
基于射线的高维数据的分类框架
Ray-based classification framework for high-dimensional data
论文作者
论文摘要
虽然在高维度中对任意结构的分类可能需要完整的定量信息,但对于简单的几何结构,有关定义结构的边界的低维定性信息就足够了。我们提出了一个深神经网络(DNN)分类框架,而不是使用密集的多维数据,该框架利用一维表示的最小收集,称为\ emph {rays},以实质性减少的信息构建结构的“指纹”。我们使用双重和三量子点设备的合成数据集在经验上研究此框架,并将其应用于识别设备状态的分类问题。我们表明,基于射线的分类器的性能已经与低维系统的传统2D图像相提并论,同时大大降低了数据采集成本。
While classification of arbitrary structures in high dimensions may require complete quantitative information, for simple geometrical structures, low-dimensional qualitative information about the boundaries defining the structures can suffice. Rather than using dense, multi-dimensional data, we propose a deep neural network (DNN) classification framework that utilizes a minimal collection of one-dimensional representations, called \emph{rays}, to construct the "fingerprint" of the structure(s) based on substantially reduced information. We empirically study this framework using a synthetic dataset of double and triple quantum dot devices and apply it to the classification problem of identifying the device state. We show that the performance of the ray-based classifier is already on par with traditional 2D images for low dimensional systems, while significantly cutting down the data acquisition cost.