论文标题

单扫描中的动态面部资产和钻机生成

Dynamic Facial Asset and Rig Generation from a Single Scan

论文作者

Li, Jiaman, Kuang, Zhengfei, Zhao, Yajie, He, Mingming, Bladin, Karl, Li, Hao

论文摘要

在电影和游戏中使用的高保真计算机生成(CG)角色的创建需要大量的体力劳动,并需要使用复杂的硬件来捕获一组全面的面部资产,从而产生高成本和长期的生产周期。为了简化和加速这一数字化过程,我们为自动生成高质量动态面部资产的框架提出了一个框架,包括可以随时部署的钻机,以供艺术家抛光。我们的框架需要进行一次扫描,以生成一组个性化的杂物,动态和基于物理的纹理以及次要面部成分(例如牙齿和眼球)。我们建立在由毛孔级细节组成的面部数据库建立,并具有超过4,000美元的不同表达方式和身份扫描,我们采用了一个自我监督的神经网络,从一组模板表达式中学习个性化的杂物。我们还对身份和表达式之间的关节分布进行了建模,从而可以推断出来自单个中性输入扫描的动态外观的完整个性化杂物。我们生成的个性化面部钻机资产与面部动画和渲染的尖端行业管道无缝兼容。我们证明,通过推断出广泛的新主题,我们的框架是强大而有效的,并说明了引人入胜的渲染结果,同时用产生的基于自定义的基于物理的动态纹理为面孔进行动画面孔。

The creation of high-fidelity computer-generated (CG) characters used in film and gaming requires intensive manual labor and a comprehensive set of facial assets to be captured with complex hardware, resulting in high cost and long production cycles. In order to simplify and accelerate this digitization process, we propose a framework for the automatic generation of high-quality dynamic facial assets, including rigs which can be readily deployed for artists to polish. Our framework takes a single scan as input to generate a set of personalized blendshapes, dynamic and physically-based textures, as well as secondary facial components (e.g., teeth and eyeballs). Built upon a facial database consisting of pore-level details, with over $4,000$ scans of varying expressions and identities, we adopt a self-supervised neural network to learn personalized blendshapes from a set of template expressions. We also model the joint distribution between identities and expressions, enabling the inference of the full set of personalized blendshapes with dynamic appearances from a single neutral input scan. Our generated personalized face rig assets are seamlessly compatible with cutting-edge industry pipelines for facial animation and rendering. We demonstrate that our framework is robust and effective by inferring on a wide range of novel subjects, and illustrate compelling rendering results while animating faces with generated customized physically-based dynamic textures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源