论文标题

非线性协方差转向使用变分高斯工艺预测模型

Nonlinear Covariance Steering using Variational Gaussian Process Predictive Models

论文作者

Tsolovikos, Alexandros, Bakolas, Efstathios

论文摘要

在这项工作中,我们考虑了将未知离散时间随机非线性系统不确定状态的前两个时刻转向给定终端分布的问题。为了实现这一目标,首先,使用随机变化高斯过程回归从一组可用的培训数据点中学到了非参数预测模型:一种强大而可扩展的机器学习工具,用于学习任意非线性功能的学习分布。其次,我们制定了一种可拖动的非线性协方差转向算法,该方向算法利用高斯流程预测模型来计算一个反馈策略,该策略将驱动系统的分布接近目标分布。特别是,我们实施了贪婪的协方差转向控制政策,该政策在每个时间步骤围绕最新预测的均值和协方差围绕高斯流程模型,解决了线性协方差转向控制问题,并且仅应用第一个控制法。然后,使用无知的高斯流程预测模型,算法继续进行下一个时间步骤,然后使用无意义的转换来传播最新反馈控制策略下的状态不确定性。还提供了说明本文主要思想的数值模拟。

In this work, we consider the problem of steering the first two moments of the uncertain state of an unknown discrete-time stochastic nonlinear system to a given terminal distribution in finite time. Toward that goal, first, a non-parametric predictive model is learned from a set of available training data points using stochastic variational Gaussian process regression: a powerful and scalable machine learning tool for learning distributions over arbitrary nonlinear functions. Second, we formulate a tractable nonlinear covariance steering algorithm that utilizes the Gaussian process predictive model to compute a feedback policy that will drive the distribution of the state of the system close to the goal distribution. In particular, we implement a greedy covariance steering control policy that linearizes at each time step the Gaussian process model around the latest predicted mean and covariance, solves the linear covariance steering control problem, and applies only the first control law. The state uncertainty under the latest feedback control policy is then propagated using the unscented transform with the learned Gaussian process predictive model and the algorithm proceeds to the next time step. Numerical simulations illustrating the main ideas of this paper are also presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源