论文标题
$ \ MATHCAL {N} = 1 $ twisted Mass Fermions the lattice on Twisted Mass fermions yang-mills理论
$\mathcal{N}=1$ Super-Yang-Mills theory on the lattice with twisted mass fermions
论文作者
论文摘要
Super-Yang-Mills理论(SYM)是粒子物理标准模型超对称扩展的中心构建块。虽然可以在扰动环境中处理后者的弱耦合子部门,但必须使用非扰动方法来处理强耦合子部门。晶格配方提供了这种方法。不幸的是,晶格正规化破坏了超对称性,因此超对称性是超对称性的。在本文中,我们调查了$ \ Mathcal {n} = 1 $ supersymmetrics su(3)Yang-Mills理论的特性,其晶格Wilson Dirac运算符具有额外的奇偶校验质量,与扭曲的质量晶格QCD相似。我们表明,特殊的$ 45^\ circ $ twist有效地移动了手性伙伴的质量分裂。因此,在有限的晶格间距处,手性和超对称性的增强了,从而改善了连续性外推。此外,我们表明,对于非相互作用的理论,$ 45^\ circ $ twist twist twist离散错误$ \ mathcal {o}(a)$被抑制,这表明相互作用的理论也会发生同样的情况。顺便说一句,我们证明了DD $α$ AMG Multigrid算法会大大加速Wilson Dirac运营商的反转。在$ 16^3 \ times 32 $晶格上,如果常用算法被DD $α$ AMG取代,则达到20个最高20个。
Super-Yang-Mills theory (SYM) is a central building block for supersymmetric extensions of the Standard Model of particle physics. Whereas the weakly coupled subsector of the latter can be treated within a perturbative setting, the strongly coupled subsector must be dealt with a non-perturbative approach. Such an approach is provided by the lattice formulation. Unfortunately a lattice regularization breaks supersymmetry and consequently the mass degeneracy within a supermultiplet. In this article we investigate the properties of $\mathcal{N}=1$ supersymmetric SU(3) Yang-Mills theory with a lattice Wilson Dirac operator with an additional parity mass, similar as in twisted mass lattice QCD. We show that a special $45^\circ$ twist effectively moves the mass splitting of the chiral partners. Thus, at finite lattice spacing both chiral and supersymmetry are enhanced resulting in an improved continuum extrapolation. Furthermore, we show that for the non-interacting theory at $45^\circ$ twist discretization errors of order $\mathcal{O}(a)$ are suppressed, suggesting that the same happens for the interacting theory as well. As an aside, we demonstrate that the DD$α$AMG multigrid algorithm accelerates the inversion of the Wilson Dirac operator considerably. On a $16^3\times 32$ lattice, speed-up factors of up to 20 are reached if commonly used algorithms are replaced by the DD$α$AMG.