论文标题
马德拉斯:多代理驾驶模拟器
MADRaS : Multi Agent Driving Simulator
论文作者
论文摘要
在这项工作中,我们提出了Madras,这是一种开源的多代理驾驶模拟器,用于设计和评估自动驾驶的运动计划算法。马德拉斯(Madras)提供了一个平台,用于构建各种高速公路和轨道驾驶场景,其中多个驾驶代理可以使用强化学习和其他机器学习算法训练运动计划任务。 Madras建在开源汽车模拟器Torcs上。 TORC提供各种具有不同动态特性的汽车和具有不同几何形状和表面特性的驾驶轨道。马德拉斯从TORC中继承了这些功能,并引入了对多代理培训,车间沟通,嘈杂的观察,随机行动和定制的交通车的支持,可以对其行为进行编程以模拟现实世界中所遇到的具有挑战性的交通状况。 Madras可用于创建驾驶任务,其复杂性可以按照明确的步骤沿八个轴调节。这使其特别适合课程和持续学习。马德拉斯(Madras)轻巧,它提供了一个方便的OpenAI健身房界面,可独立控制每辆车。除了TORC的原始转向加速器控制模式外,Madras还提供了层次结构的轨道位置 - 速度控制可能有可能用于实现更好的概括。马德拉斯使用多处理来运行每个代理作为效率的并行过程,并与流行的强化学习库(如rllib)很好地集成。
In this work, we present MADRaS, an open-source multi-agent driving simulator for use in the design and evaluation of motion planning algorithms for autonomous driving. MADRaS provides a platform for constructing a wide variety of highway and track driving scenarios where multiple driving agents can train for motion planning tasks using reinforcement learning and other machine learning algorithms. MADRaS is built on TORCS, an open-source car-racing simulator. TORCS offers a variety of cars with different dynamic properties and driving tracks with different geometries and surface properties. MADRaS inherits these functionalities from TORCS and introduces support for multi-agent training, inter-vehicular communication, noisy observations, stochastic actions, and custom traffic cars whose behaviours can be programmed to simulate challenging traffic conditions encountered in the real world. MADRaS can be used to create driving tasks whose complexities can be tuned along eight axes in well-defined steps. This makes it particularly suited for curriculum and continual learning. MADRaS is lightweight and it provides a convenient OpenAI Gym interface for independent control of each car. Apart from the primitive steering-acceleration-brake control mode of TORCS, MADRaS offers a hierarchical track-position -- speed control that can potentially be used to achieve better generalization. MADRaS uses multiprocessing to run each agent as a parallel process for efficiency and integrates well with popular reinforcement learning libraries like RLLib.