论文标题
非均匀的热发射发射对温度和空间荷兰排放之间的过渡行为的影响
Impact of Nonuniform Thermionic Emission on the Transition Behavior between Temperature- and Space-Charge-Limited Emission
论文作者
论文摘要
实验性观察长期以来表明,在温度限制(TL)(TL)和全空间充电(FSCL)发射区域之间存在平稳的滚动或膝关节过渡,即发射电流密度j-T(MIRAM)曲线或发射电流密度速度J-V曲线的发射密度 - 温度曲线(MIRAM)曲线,用于热量降低j-V曲线。在本文中,我们证明了这种实验观察到的平滑过渡不需要经常使用对阴极表面上工作函数连续分布的先验假设。取而代之的是,我们发现平滑的过渡是由于从空间异质性阴极表面的非均匀热发射物理学的自然结果而产生的。我们使用预测性的非均匀热发射模型来获得J-T和J-V曲线的平稳过渡,该模型包括3-D空间充电,斑块电场(基于局部工作功能值的静电在阴极表面上的潜在不均匀性)以及Schottky屏障降低物理学,并说明平滑的膝盖可以从热天主教的表面上出现带有少数iPteT iDept exteTERES功能值的热天主教徒表面。重要的是,我们发现斑块场效应的包含对于获得准确的J-T和J-V曲线至关重要,并且需要进一步的Schottky屏障降低以进行准确的J-V曲线。这一发现以及本文提供的发射模型对从现实,异质表面进行电子发射建模具有重要意义。这种建模对于改善对发射物理,阴极材料工程以及使用电子发射阴极的众多设备设计的相互作用的理解非常重要。
Experimental observations have long-established that there exists a smooth roll-off or knee transition between the temperature-limited (TL) and full-space-charge-limited (FSCL) emission regions of the emission current density-temperature J-T (Miram) curve, or the emission current density-voltage J-V curve for a thermionic emission cathode. In this paper, we demonstrate that this experimentally observed smooth transition does not require frequently used a priori assumptions of a continuous distribution of work functions on the cathode surface. Instead, we find the smooth transition arises as a natural consequence of the physics of nonuniform thermionic emission from a spatially heterogeneous cathode surface. We obtain this smooth transition for both J-T and J-V curves using a predictive nonuniform thermionic emission model that includes 3-D space charge, patch fields (electrostatic potential nonuniformity on the cathode surface based on local work function values), and Schottky barrier lowering physics and illustrate that a smooth knee can arise from a thermionic cathode surface with as few as two discrete work function values. Importantly, we find that the inclusion of patch field effects is crucial for obtaining accurate J-T and J-V curves, and the further inclusion of Schottky barrier lowering is needed for accurate J-V curves. This finding, and the emission model provided in this paper have important implications for modeling electron emission from realistic, heterogeneous surfaces. Such modeling is important for improved understanding of the interplay of emission physics, cathode materials engineering, and design of numerous devices employing electron emission cathodes.