论文标题

路加福音:具有实体意识自我注意的深层背景化实体表示

LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention

论文作者

Yamada, Ikuya, Asai, Akari, Shindo, Hiroyuki, Takeda, Hideaki, Matsumoto, Yuji

论文摘要

实体表示在涉及实体的自然语言任务中很有用。在本文中,我们提出了基于双向变压器的单词和实体的新预验证的情境化表示。所提出的模型将给定文本中的单词和实体视为独立的令牌,并输出其上下文化表示。我们的模型经过基于贝特蒙版语言模型的新预审进任务进行培训。该任务涉及预测从Wikipedia检索到的大型实体宣布的语料库中随机掩盖的单词和实体。我们还提出了一种实体意识到的自我注意力,该机制是变压器的自我发挥机制的扩展,并在计算注意力评分时考虑令牌(单词或实体)的类型。所提出的模型在与实体相关的各种任务上实现了令人印象深刻的经验表现。特别是,它在五个著名的数据集上获得了最新的结果:开放实体(实体键入),Tacred(关系分类),Conll-2003(命名实体识别),记录(Cloze style style Question worge atsing)和Squad 1.1(提取问题答案)。我们的源代码和预估计的表示形式可在https://github.com/studio-ousia/luke上找到。

Entity representations are useful in natural language tasks involving entities. In this paper, we propose new pretrained contextualized representations of words and entities based on the bidirectional transformer. The proposed model treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. Our model is trained using a new pretraining task based on the masked language model of BERT. The task involves predicting randomly masked words and entities in a large entity-annotated corpus retrieved from Wikipedia. We also propose an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer, and considers the types of tokens (words or entities) when computing attention scores. The proposed model achieves impressive empirical performance on a wide range of entity-related tasks. In particular, it obtains state-of-the-art results on five well-known datasets: Open Entity (entity typing), TACRED (relation classification), CoNLL-2003 (named entity recognition), ReCoRD (cloze-style question answering), and SQuAD 1.1 (extractive question answering). Our source code and pretrained representations are available at https://github.com/studio-ousia/luke.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源