论文标题

动态图:神经网络的学习实例感知连接

Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks

论文作者

Yuan, Kun, Li, Quanquan, Chen, Dapeng, Zhou, Aojun, Yan, Junjie

论文摘要

采用深神经网络的一种做法是将相同的体系结构应用于所有输入实例。但是,固定的体系结构可能对具有高度多样性的数据代表不够代表。为了促进模型容量,现有方法通常采用更大的卷积内核或更深的网络结构,这可能会增加计算成本。在本文中,我们通过提高动态图网络(DG-NET)来解决此问题。网络学习实例感知的连接,该连接为不同实例创建不同的前进路径。具体而言,网络被初始化为一个完整的有向无环图,其中节点代表卷积块,边缘代表连接路径。我们通过可学习的模块\ textit {路由器}生成边缘权重,然后选择其权重大于阈值的边缘,以调整神经网络结构的连通性。 DG-NET聚集体在每个节点中动态功能,而不是使用网络的相同路径,这使网络具有更多的表示能力。为了促进培训,我们代表邻接矩阵中每个样本的网络连接性。将矩阵更新为正向通行中的汇总特征,缓存在内存中,并用于向后通过的梯度计算。我们通过几种静态体系结构(包括Mobilenetv2,Resnet,Resnext和Regnet)验证方法的有效性。对成像网分类和可可对象检测进行了广泛的实验,该实验显示了我们方法的有效性和泛化能力。

One practice of employing deep neural networks is to apply the same architecture to all the input instances. However, a fixed architecture may not be representative enough for data with high diversity. To promote the model capacity, existing approaches usually employ larger convolutional kernels or deeper network structure, which may increase the computational cost. In this paper, we address this issue by raising the Dynamic Graph Network (DG-Net). The network learns the instance-aware connectivity, which creates different forward paths for different instances. Specifically, the network is initialized as a complete directed acyclic graph, where the nodes represent convolutional blocks and the edges represent the connection paths. We generate edge weights by a learnable module \textit{router} and select the edges whose weights are larger than a threshold, to adjust the connectivity of the neural network structure. Instead of using the same path of the network, DG-Net aggregates features dynamically in each node, which allows the network to have more representation ability. To facilitate the training, we represent the network connectivity of each sample in an adjacency matrix. The matrix is updated to aggregate features in the forward pass, cached in the memory, and used for gradient computing in the backward pass. We verify the effectiveness of our method with several static architectures, including MobileNetV2, ResNet, ResNeXt, and RegNet. Extensive experiments are performed on ImageNet classification and COCO object detection, which shows the effectiveness and generalization ability of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源