论文标题
对称和不可变的Pauli通道的几何形状
Geometry of symmetric and non-invertible Pauli channels
论文作者
论文摘要
我们分析了阳性和完全正面的几何形状,可保留Pauli地图,这些图由多达两个不同的参数完全确定。这包括五类的对称和不可变的Pauli频道。我们在Choi-Jamio \ Lkowski状态的空间中使用Hilbert-Schmidt度量,我们计算纠缠破裂,产生的时间本地和可划分通道的相对体积。最后,我们发现与所有Pauli通道的四面体有关的完整阳性区域的形状。
We analyze the geometry of positive and completely positive, trace preserving Pauli maps that are fully determined by up to two distinct parameters. This includes five classes of symmetric and non-invertible Pauli channels. Using the Hilbert-Schmidt metric in the space of the Choi-Jamio\lkowski states, we compute the relative volumes of entanglement breaking, time-local generated, and divisible channels. Finally, we find the shapes of the complete positivity regions in relation to the tetrahedron of all Pauli channels.