论文标题

通过异步随机连续的凸近近似实用的预编码

Practical Precoding via Asynchronous Stochastic Successive Convex Approximation

论文作者

Idrees, Basil M., Akhtar, Javed, Rajawat, Ketan

论文摘要

我们考虑使用凸非平滑正常器对平滑的非凸丢失函数的随机优化。在在线环境中,在每次迭代时都可以使用损失的随机梯度的单个样本,可以使用近端随机梯度下降(SGD)算法及其变体来解决该问题。但是,在许多问题中,尤其是在通信和信号处理中引起的问题,由于损失函数的结构,可能会提供随机梯度以外的信息。 SGD不使用此类额外信息,但已证明是有用的,例如在随机期望最大化,随机多数化最小化和随机连续的凸近近似(SCA)方法的情况下。通过在每次迭代中构建损失函数的随机替代物,随机SCA算法可以利用损失函数的结构特性并与SGD相比实现出色的经验性能。 在这项工作中,我们仔细研究了随机SCA算法并开发其异步变体,该变体可用于无线网络中的资源分配。虽然已知随机SCA算法渐近地收敛,但其迭代复杂性尚未得到充分研究,并且是当前工作的重点。从非反应分析获得的见解使我们能够开发出更实际的异步变体的随机SCA算法,该变体允许使用早期迭代中计算的替代物。我们表征了算法可以忍受的最大延迟上的精确结合,同时仍达到相同的收敛速率。我们将算法应用于无线传感器网络中线性预编码的问题,在该网络中可以在低复杂性下实现,但在实践中表现出色。

We consider stochastic optimization of a smooth non-convex loss function with a convex non-smooth regularizer. In the online setting, where a single sample of the stochastic gradient of the loss is available at every iteration, the problem can be solved using the proximal stochastic gradient descent (SGD) algorithm and its variants. However in many problems, especially those arising in communications and signal processing, information beyond the stochastic gradient may be available thanks to the structure of the loss function. Such extra-gradient information is not used by SGD, but has been shown to be useful, for instance in the context of stochastic expectation-maximization, stochastic majorization-minimization, and stochastic successive convex approximation (SCA) approaches. By constructing a stochastic strongly convex surrogates of the loss function at every iteration, the stochastic SCA algorithms can exploit the structural properties of the loss function and achieve superior empirical performance as compared to the SGD. In this work, we take a closer look at the stochastic SCA algorithm and develop its asynchronous variant which can be used for resource allocation in wireless networks. While the stochastic SCA algorithm is known to converge asymptotically, its iteration complexity has not been well-studied, and is the focus of the current work. The insights obtained from the non-asymptotic analysis allow us to develop a more practical asynchronous variant of the stochastic SCA algorithm which allows the use of surrogates calculated in earlier iterations. We characterize precise bound on the maximum delay the algorithm can tolerate, while still achieving the same convergence rate. We apply the algorithm to the problem of linear precoding in wireless sensor networks, where it can be implemented at low complexity but is shown to perform well in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源