论文标题

在二维常规网格上广播

Broadcasting on Two-Dimensional Regular Grids

论文作者

Makur, Anuran, Mossel, Elchanan, Polyanskiy, Yury

论文摘要

我们研究了在定向无环图上广播的问题的专业化,即在2D常规网格上进行广播。考虑一个2D常规网格,带有源顶点$ x $ at Layer $ 0 $和$ K+1 $的顶点,$ k \ geq 1 $,该$ k $ t $ k $ frof $ x $。 2D常规网格的每个顶点都有超级$ 2 $,边界的顶点都有固定的$ 1 $,并且所有其他顶点都有indegree $ 2 $。在时间$ 0 $,$ x $被随机给出。在时间$ k \ geq 1 $,第$ k $中的每个顶点收到其父母的传输位,其中$ k-1 $,其中钻头通过噪声级别$δ\ in(0,1/2)$的二进制对称频道。然后,每个顶点使用常见的布尔处理函数结合其接收的位,以产生输出位。目的是从$ k $ a $ k \ rightarrow \ rightarrow \ infty $中恢复所有$ 1/2 $的$ x $。除了它们在通信网络中的自然解释外,此类广播过程还可以解释为1D概率的蜂窝自动机(PCA),边界条件限制了每次$ k $至$ k+1 $的站点数量。我们猜想,无论噪声水平和处理功能的选择如何,都无法在2D常规网格中传播信息。在本文中,我们取得了进步,以建立这种猜想,并证明使用Percolation和编码理论的想法,如果所有顶点都使用和 /或XOR处理功能,则不可能$ x $的回收$ x $。此外,我们提出了一种基于Martingale的方法,该方法在使用某些Supermartingales可以严格构建时,使用所有NAND处理功能时都无法恢复任何$δ$的$ x $。我们还通过通过线性编程为$δ$的不同值计算明确的示例,为这些超级明星的存在提供了数值证据。

We study a specialization of the problem of broadcasting on directed acyclic graphs, namely, broadcasting on 2D regular grids. Consider a 2D regular grid with source vertex $X$ at layer $0$ and $k+1$ vertices at layer $k\geq 1$, which are at distance $k$ from $X$. Every vertex of the 2D regular grid has outdegree $2$, the vertices at the boundary have indegree $1$, and all other vertices have indegree $2$. At time $0$, $X$ is given a random bit. At time $k\geq 1$, each vertex in layer $k$ receives transmitted bits from its parents in layer $k-1$, where the bits pass through binary symmetric channels with noise level $δ\in(0,1/2)$. Then, each vertex combines its received bits using a common Boolean processing function to produce an output bit. The objective is to recover $X$ with probability of error better than $1/2$ from all vertices at layer $k$ as $k \rightarrow \infty$. Besides their natural interpretation in communication networks, such broadcasting processes can be construed as 1D probabilistic cellular automata (PCA) with boundary conditions that limit the number of sites at each time $k$ to $k+1$. We conjecture that it is impossible to propagate information in a 2D regular grid regardless of the noise level and the choice of processing function. In this paper, we make progress towards establishing this conjecture, and prove using ideas from percolation and coding theory that recovery of $X$ is impossible for any $δ$ provided that all vertices use either AND or XOR processing functions. Furthermore, we propose a martingale-based approach that establishes the impossibility of recovering $X$ for any $δ$ when all NAND processing functions are used if certain supermartingales can be rigorously constructed. We also provide numerical evidence for the existence of these supermartingales by computing explicit examples for different values of $δ$ via linear programming.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源