论文标题

使用耦合矩阵分解的部分观察到的社交网络中扩散和结构的联合推断

Joint Inference of Diffusion and Structure in Partially Observed Social Networks Using Coupled Matrix Factorization

论文作者

Ramezani, Maryam, Ahadinia, Aryan, Ziaei, Amirmohammad, Rabiee, Hamid R.

论文摘要

在大规模网络中访问完整的数据通常是不可行的。因此,丢失数据的问题是对现实世界社交网络的分析和建模中的一个至关重要且不可避免的问题。但是,关于社交网络各个方面的大多数研究都不认为这一限制。解决此问题的一种有效方法是将丢失的数据作为预处理步骤恢复。在本文中,从部分观察到的数据中学到了一个模型,以推断未观察到的扩散和结构网络。为了共同发现省略的扩散活动和隐藏的网络结构,我们开发了一种称为“ diffstru”的概率生成模型。在拟议的方法中,通过学习与低维的潜在因素相结合,在提议的方法中使用了节点和级联过程之间的相互关系。除了推断出看不见的数据外,诸如社区检测之类的潜在因素也可能有助于解决网络分类问题。我们在LFR网络和真实数据集(包括Twitter和MemTracker)上测试了模拟独立级联的不同数据方案。这些合成和现实世界数据集的实验表明,该提出的方法成功地检测了无形的社会行为,预测链接并识别潜在特征。

Access to complete data in large-scale networks is often infeasible. Therefore, the problem of missing data is a crucial and unavoidable issue in the analysis and modeling of real-world social networks. However, most of the research on different aspects of social networks does not consider this limitation. One effective way to solve this problem is to recover the missing data as a pre-processing step. In this paper, a model is learned from partially observed data to infer unobserved diffusion and structure networks. To jointly discover omitted diffusion activities and hidden network structures, we develop a probabilistic generative model called "DiffStru." The interrelations among links of nodes and cascade processes are utilized in the proposed method via learning coupled with low-dimensional latent factors. Besides inferring unseen data, latent factors such as community detection may also aid in network classification problems. We tested different missing data scenarios on simulated independent cascades over LFR networks and real datasets, including Twitter and Memtracker. Experiments on these synthetic and real-world datasets show that the proposed method successfully detects invisible social behaviors, predicts links, and identifies latent features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源