论文标题
Abhyankar的某些零星群体的惯性猜想
Abhyankar's Inertia Conjecture for Some Sporadic Groups
论文作者
论文摘要
本文通过表明所有可能的惯性组以$ g $ -galois的封面出现,以验证了Abhyankar对某些零星$ g $的惯性猜想。对于较大的一组零星组,几乎有限的所有可能的分支不变性都显示出来。特别是,我们证明,除八个可能的分支不变式外,所有可能的不变性都可以实现,对于$ \ text {m} _ {11} $ - 仿射线的Galois封面。
This paper verifies Abhyankar's Inertia Conjecture for certain sporadic groups $G$ in particular characteristics by showing that all possible inertia groups occur for $G$-Galois covers of the affine line. For a larger set of sporadic groups, all but finitely many possible ramification invariants are shown to occur. In particular, we prove that all but eight of the possible ramification invariants are realizable for $\text{M}_{11}$-Galois covers of the affine line.