论文标题

旋转轨道材料中电荷旋转互连的统一框架

Unified Framework for Charge-Spin Interconversion in Spin-Orbit Materials

论文作者

Sayed, Shehrin, Hong, Seokmin, Huang, Xiaoxi, Caretta, Lucas, Everhardt, Arnoud S., Ramesh, Ramamoorthy, Salahuddin, Sayeef, Datta, Supriyo

论文摘要

由于有效的发电和检测自旋极化电子,因此具有自旋轨道耦合的材料对各种自旋型应用非常感兴趣。在过去的十年中,已经研究了许多材料,包括拓扑绝缘子,过渡金属,近代绝缘子,半学,半导体和氧化物;但是,没有统一的物理框架来理解物理学,因此没有理解所需属性的材料系统和设备。我们提出了一个模型,该模型以统一的方式将在各种材料上观察到的实验数据结合在一起。我们表明,在具有给定自旋摩托锁定的材料中,状态的密度在确定电荷旋转互转换效率方面起着至关重要的作用,并且可以获得简单的逆关系。值得注意的是,在过去的十年中,在许多不同的材料上获得的实验数据紧密遵循这种反相关关系。我们进一步推断了两个当前兴趣的两个合格:自旋轨道扭矩(SOT)效率(用于直接效应)和逆Rashba-Edelstein效应长度(对于逆效应),它们在统计学上与广泛材料品种的现有实验数据符合良好的一致性。尤其是,我们确定了SOT效率相对于样本中的载体浓度的扩展定律,该法律与现有数据一致。这种协议很有趣,因为我们的运输模型仅包含费米的表面贡献,并且与SOT效率的常规观点根本不同,SOT效率包括所有被占领国的贡献。

Materials with spin-orbit coupling are of great interest for various spintronics applications due to the efficient electrical generation and detection of spin-polarized electrons. Over the past decade, many materials have been studied, including topological insulators, transition metals, Kondo insulators, semimetals, semiconductors, and oxides; however, there is no unifying physical framework for understanding the physics and therefore designing a material system and devices with the desired properties. We present a model that binds together the experimental data observed on the wide variety of materials in a unified manner. We show that in a material with a given spin-momentum locking, the density of states plays a crucial role in determining the charge-spin interconversion efficiency, and a simple inverse relationship can be obtained. Remarkably, experimental data obtained over the last decade on many different materials closely follow such an inverse relationship. We further deduce two figure-of-merits of great current interest: the spin-orbit torque (SOT) efficiency (for the direct effect) and the inverse Rashba-Edelstein effect length (for the inverse effect), which statistically show good agreement with the existing experimental data on wide varieties of materials. Especially, we identify a scaling law for the SOT efficiency with respect to the carrier concentration in the sample, which agrees with existing data. Such an agreement is intriguing since our transport model includes only Fermi surface contributions and fundamentally different from the conventional views of the SOT efficiency that includes contributions from all the occupied states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源