论文标题

在有效描述热QCD培养基中的二阶相对论粘性流体动力学

Second order relativistic viscous hydrodynamics within an effective description of hot QCD medium

论文作者

Bhadury, Samapan, Kurian, Manu, Chandra, Vinod, Jaiswal, Amaresh

论文摘要

基于有效的逃避性准二粒模型,在协方差动力学理论的框架内得出了剪切和散装粘性压力演化的二阶流体动力方程。平衡分布函数中的温度依赖性散型参数导致玻尔兹曼方程中的平均野外项,从而影响热QCD物质中的相互作用。通过在弛豫时间近似中使用有效玻尔兹曼方程的迭代溶液(如迭代溶液),获得了分布函数的粘性校正,在梯度膨胀中最多可获得二阶。在梯度中,已经研究了对运输系数以及熵电流的平均场贡献以及熵电流的影响。与先前的计算相反,我们发现二阶的非变化熵通量。在$ 1+1- $尺寸增强不变纵向扩张的情况下,已经对相互作用的Quark和Gluons系统进行了相对论二阶粘性水动力学的有效描述。我们研究了这种简化膨胀的温度,压力各向异性和对熵密度的粘性校正的适当时间演变。夸克 - 格鲁恩等离子体的二阶进化被认为会受到平均野外贡献和状态现实方程的影响。

The second-order hydrodynamic equations for evolution of shear and bulk viscous pressure have been derived within the framework of covariant kinetic theory based on the effective fugacity quasiparticle model. The temperature-dependent fugacity parameter in the equilibrium distribution function leads to a mean field term in the Boltzmann equation which affects the interactions in the hot QCD matter. The viscous corrections to distribution function, up to second-order in gradient expansion, have been obtained by employing a Chapman-Enskog like iterative solution of the effective Boltzmann equation within the relaxation time approximation. The effect of mean field contributions to transport coefficients as well as entropy current has been studied up to second-order in gradients. In contrast to the previous calculations, we find non-vanishing entropy flux at second order. The effective description of relativistic second-order viscous hydrodynamics, for a system of interacting quarks and gluons, has been quantitatively analyzed in the case of the $1+1-$dimensional boost invariant longitudinal expansion. We study the proper time evolution of temperature, pressure anisotropy, and viscous corrections to entropy density for this simplified expansion. The second order evolution of quark-gluon plasma is seen to be affected significantly with the inclusion of mean field contributions and the realistic equation of state.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源