论文标题

通过更新过程进行间歇性预测

Intermittent Demand Forecasting with Renewal Processes

论文作者

Turkmen, Ali Caner, Januschowski, Tim, Wang, Yuyang, Cemgil, Ali Taylan

论文摘要

间歇性是需求预测中的一个常见且具有挑战性的问题。我们引入了一个新的统一框架,用于构建间歇性需求预测模型,该模型将现有方法纳入了多个方向。我们的框架是基于建立良好模型的方法的扩展,用于离散时间续订过程,该过程可以隔离地说明需求到达等衰老,聚类和准周期性等模式。与离散时间更新过程的连接不仅可以用于克罗斯顿型模型的原则扩展,而且还可以通过用反复的神经网络替换指数平滑来自然地包含基于神经网络的模型。我们还证明,通过框架的微不足道扩展,可以建模连续时间需求到达,即使用时间点过程。这会导致更灵活的建模,即直接使用精细时间戳的单个采购订单的数据。通过对这一理论进步的补充,我们通过对标准间歇性数据集的广泛实证研究来证明我们的预测实践框架的功效,在这些研究中,我们在各种场景中报告了预测的准确性,这些方案与艺术状况相比。

Intermittency is a common and challenging problem in demand forecasting. We introduce a new, unified framework for building intermittent demand forecasting models, which incorporates and allows to generalize existing methods in several directions. Our framework is based on extensions of well-established model-based methods to discrete-time renewal processes, which can parsimoniously account for patterns such as aging, clustering and quasi-periodicity in demand arrivals. The connection to discrete-time renewal processes allows not only for a principled extension of Croston-type models, but also for an natural inclusion of neural network based models---by replacing exponential smoothing with a recurrent neural network. We also demonstrate that modeling continuous-time demand arrivals, i.e., with a temporal point process, is possible via a trivial extension of our framework. This leads to more flexible modeling in scenarios where data of individual purchase orders are directly available with granular timestamps. Complementing this theoretical advancement, we demonstrate the efficacy of our framework for forecasting practice via an extensive empirical study on standard intermittent demand data sets, in which we report predictive accuracy in a variety of scenarios that compares favorably to the state of the art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源