论文标题
在高纤维曲线上线性序列的算术拐点公式
Arithmetic inflection formulae for linear series on hyperelliptic curves
论文作者
论文摘要
在复杂数字上,Plücker的公式计算了一系列投影尺寸$ r $和度量$ d $的拐点系列的拐点数量。在这里,我们探讨了Plücker公式在$ \ Mathbb {a}^1 $ homotoppy理论中的自然类似物的几何含义。
Over the complex numbers, Plücker's formula computes the number of inflection points of a linear series of projective dimension $r$ and degree $d$ on a curve of genus $g$. Here we explore the geometric meaning of a natural analogue of Plücker's formula in $\mathbb{A}^1$-homotopy theory for certain linear series on hyperelliptic curves defined over an arbitrary field.