论文标题

通过模仿隐式场景来定期对话生成

Regularizing Dialogue Generation by Imitating Implicit Scenarios

论文作者

Feng, Shaoxiong, Ren, Xuancheng, Chen, Hongshen, Sun, Bin, Li, Kan, Sun, Xu

论文摘要

人类对话是基于方案的适当响应,通常与特定情景所需要的潜在上下文知识有关。为了启用更有意义和特定于上下文的响应,我们建议从情景的角度来改善生成对话系统,在这种情况下,对话历史和未来对话都被考虑在内,以隐式地重建场景知识。更重要的是,使用模仿学习框架进一步内部化了对话方案,通过传统的对话模型可以通过传输基于方案的对话模型中的层次结构监督信号中包含的情景知识有效地正规化,因此在实际范围中不需要未来的对话。广泛的评估表明,我们的方法在多样性和相关性上的最先进基线非常优于最先进的基线,并表达了特定方案的知识。

Human dialogues are scenario-based and appropriate responses generally relate to the latent context knowledge entailed by the specific scenario. To enable responses that are more meaningful and context-specific, we propose to improve generative dialogue systems from the scenario perspective, where both dialogue history and future conversation are taken into account to implicitly reconstruct the scenario knowledge. More importantly, the conversation scenarios are further internalized using imitation learning framework, where the conventional dialogue model that has no access to future conversations is effectively regularized by transferring the scenario knowledge contained in hierarchical supervising signals from the scenario-based dialogue model, so that the future conversation is not required in actual inference. Extensive evaluations show that our approach significantly outperforms state-of-the-art baselines on diversity and relevance, and expresses scenario-specific knowledge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源