论文标题
强大的高维记忆增强神经网络
Robust High-dimensional Memory-augmented Neural Networks
论文作者
论文摘要
传统的神经网络需要大量的数据,以在慢训练过程中构建其复杂的映射,从而阻碍其重新学习和适应新数据的能力。记忆增强的神经网络通过明确的记忆来增强神经网络,以克服这些问题。但是,访问此明确的内存是通过涉及每个单独内存输入的软读取和写入操作发生的,当使用常规的von Neumann计算机体系结构实现时,会导致瓶颈。为了克服这种瓶颈,我们提出了一种强大的体系结构,该体系结构采用计算存储器单元作为高维(HD)向量的明确记忆进行模拟内存计算,同时非常匹配32位软件等效的精度。这是通过基于内容的注意机制来实现的,该机制用不相关的HD矢量代表计算存储器中无关的项目,其实用值的组件可以通过二进制或双极组件很容易近似。实验结果证明了我们使用超过256,000个相位变化的内存设备在Omniglot数据集上几乎没有弹出图像分类任务上的功效。我们的方法有效地将深度神经网络表示的丰富性与高清计算融合在一起,该计算为适用于推理,融合和压缩的可靠矢量符号操作铺平了道路。
Traditional neural networks require enormous amounts of data to build their complex mappings during a slow training procedure that hinders their abilities for relearning and adapting to new data. Memory-augmented neural networks enhance neural networks with an explicit memory to overcome these issues. Access to this explicit memory, however, occurs via soft read and write operations involving every individual memory entry, resulting in a bottleneck when implemented using the conventional von Neumann computer architecture. To overcome this bottleneck, we propose a robust architecture that employs a computational memory unit as the explicit memory performing analog in-memory computation on high-dimensional (HD) vectors, while closely matching 32-bit software-equivalent accuracy. This is achieved by a content-based attention mechanism that represents unrelated items in the computational memory with uncorrelated HD vectors, whose real-valued components can be readily approximated by binary, or bipolar components. Experimental results demonstrate the efficacy of our approach on few-shot image classification tasks on the Omniglot dataset using more than 256,000 phase-change memory devices. Our approach effectively merges the richness of deep neural network representations with HD computing that paves the way for robust vector-symbolic manipulations applicable in reasoning, fusion, and compression.