论文标题
稀疏MRI信息的概率3D表面重建
Probabilistic 3D surface reconstruction from sparse MRI information
论文作者
论文摘要
在医学图像分析和临床研究中,来自磁共振(MR)成像数据的表面重建是必不可少的。可靠且有效的重建工具应:在预测准确的局部和高分辨率模型,评估预测不确定性,使用尽可能少的输入数据时,要快速预测。但是,当前的深度学习状态(SOTA)3D重建方法通常只会产生定位在规范位置或缺乏不确定性评估的有限变异性的形状。在本文中,我们提出了一种新型的概率深度学习方法,用于从稀疏的2D MR图像数据和差异不确定性预测中进行3D表面重建。我们的方法能够从有限训练集中的三个准正交MR成像切片中重建大型表面网格,同时通过高斯分布对每个网格顶点进行建模。先前的形状信息是使用内置线性主组件分析(PCA)模型编码的。关于心脏MR数据的广泛实验表明,我们的概率方法成功地评估了预测不确定性,而同时又定性和定量地表现出SOTA方法的形状预测。与SOTA相比,我们能够通过使用空间意识到的神经网络正确定位和定位预测。
Surface reconstruction from magnetic resonance (MR) imaging data is indispensable in medical image analysis and clinical research. A reliable and effective reconstruction tool should: be fast in prediction of accurate well localised and high resolution models, evaluate prediction uncertainty, work with as little input data as possible. Current deep learning state of the art (SOTA) 3D reconstruction methods, however, often only produce shapes of limited variability positioned in a canonical position or lack uncertainty evaluation. In this paper, we present a novel probabilistic deep learning approach for concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric uncertainty prediction. Our method is capable of reconstructing large surface meshes from three quasi-orthogonal MR imaging slices from limited training sets whilst modelling the location of each mesh vertex through a Gaussian distribution. Prior shape information is encoded using a built-in linear principal component analysis (PCA) model. Extensive experiments on cardiac MR data show that our probabilistic approach successfully assesses prediction uncertainty while at the same time qualitatively and quantitatively outperforms SOTA methods in shape prediction. Compared to SOTA, we are capable of properly localising and orientating the prediction via the use of a spatially aware neural network.