论文标题

探索CNN嵌入空间的互换性

Exploring the Interchangeability of CNN Embedding Spaces

论文作者

McNeely-White, David, Sattelberg, Benjamin, Blanchard, Nathaniel, Beveridge, Ross

论文摘要

CNN特征空间可以线性映射,因此通常可以互换。这种等效性跨越架构,培训数据集和网络任务的变化。具体而言,我们绘制了10个图像分类的CNN和4个面部识别CNN之间的映射。当将一个CNN生成的图像嵌入转换为对应于在同一任务上训练的第二个CNN的特征空间的嵌入式时,它们各自的图像分类或面部验证性能在很大程度上得到了保留。对于接受相同类别训练并共享常见后端(Soft-Max)体系结构的CNN,可以始终直接从后端层的权重来直接计算线性映射。但是,对分类器的完美知识进行封闭式分析的情况是限制的。因此,为封闭设置的图像分类任务和面部识别的开放设定任务提供了估计映射的经验方法。提出的结果暴露了CNN嵌入的本质上可互换的性质,以实现两项重要和共同的识别任务。含义是深远的,这表明由为共同任务设计和培训的网络所学的表示形式之间的基本共性。一种实际的含义是,可以使用这些映射比较一些常用CNN的面部嵌入。

CNN feature spaces can be linearly mapped and consequently are often interchangeable. This equivalence holds across variations in architectures, training datasets, and network tasks. Specifically, we mapped between 10 image-classification CNNs and between 4 facial-recognition CNNs. When image embeddings generated by one CNN are transformed into embeddings corresponding to the feature space of a second CNN trained on the same task, their respective image classification or face verification performance is largely preserved. For CNNs trained to the same classes and sharing a common backend-logit (soft-max) architecture, a linear-mapping may always be calculated directly from the backend layer weights. However, the case of a closed-set analysis with perfect knowledge of classifiers is limiting. Therefore, empirical methods of estimating mappings are presented for both the closed-set image classification task and the open-set task of face recognition. The results presented expose the essentially interchangeable nature of CNNs embeddings for two important and common recognition tasks. The implications are far-reaching, suggesting an underlying commonality between representations learned by networks designed and trained for a common task. One practical implication is that face embeddings from some commonly used CNNs can be compared using these mappings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源