论文标题

重新平衡电动汽车共享系统的增强学习方法

A Reinforcement Learning Approach for Rebalancing Electric Vehicle Sharing Systems

论文作者

Bogyrbayeva, Aigerim, Jang, Sungwook, Shah, Ankit, Jang, Young Jae, Kwon, Changhyun

论文摘要

本文提出了一种加强学习方法,用于在自由浮动的电动汽车共享系统(FFEVSS)中进行夜间离线重新平衡操作。由于网络的需求稀少,FFEVS需要将电动车辆(EV)搬迁到充电站和Demander节点,这通常由一组驱动程序完成。班车用于在整个网络上取下驱动程序。这项研究的目的是解决航天飞机路由问题,以在最小的时间内完成重新平衡工作。我们考虑了该问题的加强学习框架,其中中央控制器确定了多个航天飞机机队的路由政策。我们部署了一种策略梯度方法来培训经常性的神经网络,并将获得的政策结果与启发式解决方案进行了比较。我们的数值研究表明,与文献中现有的解决方案不同,所提出的方法允许解决问题的一般版本,而无需限制城市EV网络结构和电动汽车的充电要求。此外,博学的政策提供了广泛的灵活性,从而大大减少了重新平衡网络的时间。

This paper proposes a reinforcement learning approach for nightly offline rebalancing operations in free-floating electric vehicle sharing systems (FFEVSS). Due to sparse demand in a network, FFEVSS require relocation of electrical vehicles (EVs) to charging stations and demander nodes, which is typically done by a group of drivers. A shuttle is used to pick up and drop off drivers throughout the network. The objective of this study is to solve the shuttle routing problem to finish the rebalancing work in the minimal time. We consider a reinforcement learning framework for the problem, in which a central controller determines the routing policies of a fleet of multiple shuttles. We deploy a policy gradient method for training recurrent neural networks and compare the obtained policy results with heuristic solutions. Our numerical studies show that unlike the existing solutions in the literature, the proposed methods allow to solve the general version of the problem with no restrictions on the urban EV network structure and charging requirements of EVs. Moreover, the learned policies offer a wide range of flexibility resulting in a significant reduction in the time needed to rebalance the network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源