论文标题
量化随机预测的分布式编码
Distributed Coding of Quantized Random Projections
论文作者
论文摘要
在本文中,我们为结构化源的分布式源编码(例如稀疏信号)提出了一个新的框架。我们的框架利用了线性反问题理论的最新进展和信号表示的最新进展,并使用不连贯的预测。我们的方法获取并量化信号的不连贯线性测量值,这些线性测量被表示为单独的bitplanes。每个位平面均使用适当速率的分布式源代码进行编码,并传输。解码器从最低显着的双翼飞机开始,并使用信号作为侧面信息的预测,根据源预测和信号迭代恢复每个位平面,假设所有先前具有较低意义的比特平面已经恢复。我们提供了指导速率选择的理论结果,仅依靠源的最小二乘预测误差。这与现有方法相反,后者依靠难以估计的信息理论指标来设定速率。我们使用模拟遥感多光谱图像来验证我们的方法,并将其与现有相似复杂性的方法进行比较。
In this paper we propose a new framework for distributed source coding of structured sources, such as sparse signals. Our framework capitalizes on recent advances in the theory of linear inverse problems and signal representations using incoherent projections. Our approach acquires and quantizes incoherent linear measurements of the signal, which are represented as separate bitplanes. Each bitplane is coded using a distributed source code of the appropriate rate, and transmitted. The decoder, starts from the least significant biplane and, using a prediction of the signal as side information, iteratively recovers each bitplane based on the source prediction and the signal, assuming all the previous bitplanes of lower significance have already been recovered. We provide theoretical results guiding the rate selection, relying only on the least squares prediction error of the source. This is in contrast to existing approaches which rely on difficult-to-estimate information-theoretic metrics to set the rate. We validate our approach using simulations on remote-sensing multispectral images, comparing them with existing approaches of similar complexity.