论文标题

恒星质量黑洞的形成和来自三维旋转芯折叠超新星模拟的多门传递信号

Stellar Mass Black Hole Formation and Multi-messenger Signals from Three Dimensional Rotating Core-Collapse Supernova Simulations

论文作者

Pan, Kuo-Chuan, Liebendörfer, Matthias, Couch, Sean, Thielemann, Friedrich-Karl

论文摘要

我们使用各向同性扩散源近似中微子传输的近似值和有效的一般相对论潜在的潜在近似值,对40 msun祖细胞模型进行了自搭配的3D核心偏转超新星模拟。我们考虑了三种不同的旋转速度,其初始角速度为$ω_0= 0 $,〜0.5和〜1〜ad〜s $^{ - 1} $,并研究旋转对冲击动态,黑洞形成和引力波信号的影响。快速旋转的模型在$ \ sim 250 $ 〜MS后面发生早期爆炸,并显示出低$ t/| w | $不稳定性的迹象。我们在$ \ sim 460 $ 〜ms后的爆炸中找不到黑洞的形成。相比之下,我们发现在776〜ms〜的爆炸后和936〜MS〜分别用于非旋转和缓慢旋转模型的后射线形成。缓慢旋转的模型以$ \ sim 650 $ 〜ms的爆炸后爆炸,随后的后备积聚到proto-neutron star(PNS)会导致BH形成。另外,站立〜震动〜不稳定性在模型中诱导原始恒星的旋转,该模型从非旋转祖细胞开始。假设在黑洞形成过程中保存特定的角动量,这对应于$ a = j/m = 0.046 $的黑孔旋转参数。但是,如果没有爆炸设置,所有角动量最终将被BH积聚,从而导致非旋转BH。在黑色孔形成下,缓慢旋转模型的成功爆炸大大减慢了PN上的增生,从而允许继续冷却和收缩,从而导致极高的重力波频率($ f \ sim3000 $ 〜Hz),而非旋转模型的引力引力信号与我们相似的2D仿真相似。

We present self-consistent, 3D core-collapse supernova simulations of a 40 Msun progenitor model using the isotropic diffusion source approximation for neutrino transport and an effective general relativistic potential up to $\sim0.9$~s~postbounce. We consider three different rotational speeds with initial angular velocities of $Ω_0=0$,~0.5, and~1~rad~s$^{-1}$ and investigate the impact of rotation on shock dynamics, black hole formation, and gravitational wave signals. The rapidly-rotating model undergoes an early explosion at $\sim 250$~ms postbounce and shows signs of the low $T/|W|$ instability. We do not find black hole formation in this model within $\sim 460$~ms postbounce. In contrast, we find black hole formation at 776~ms~postbounce and 936~ms~postbounce for the non-rotating and slowly-rotating models, respectively. The slowly-rotating model explodes at $\sim 650$~ms postbounce, and the subsequent fallback accretion onto the proto-neutron star (PNS) results in BH formation. In addition, the standing~accretion~shock~instability induces rotation of the proto-neutron star in the model that started with a non-rotating progenitor. Assuming conservation of specific angular momentum during black hole formation, this corresponds to a black~hole spin parameter of $a=J/M=0.046$. However, if no explosion sets in, all the angular momentum will eventually be accreted by the BH, resulting in a non-spinning BH. The successful explosion of the slowly-rotating model drastically slows down the accretion onto the PNS, allowing continued cooling and contraction that results in an extremely high gravitational-wave frequency ($f\sim3000$~Hz) at black~hole formation, while the non-rotating model generates gravitational wave signals similar to our corresponding 2D simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源