论文标题
在超快时间尺度上追踪轨道图像
Tracing orbital images on ultrafast time scales
论文作者
论文摘要
边界轨道,即分子的最高占据和最低的未占地轨道,通常确定分子特性,例如化学键合和反应性。因此,尽管严格来说,它们不是量子力学的观察者,但对测量它们引起了很多兴趣。然而,借助光发射断层扫描,最近引入了一种强大的技术,通过该技术可以在动量空间中成像吸附在表面上的分子轨道中的电子分布。它甚至用于鉴定表面反应中的反应中间体。但是,到目前为止,不可能及时遵循轨道的动量空间动力学,例如通过激发过程或化学反应。在这里,我们报告了朝这个方向迈出的关键步骤:我们使用高激光谐波和最近开发的动量显微镜结合了时间分辨的光发射,以建立一个层压板,飞秒泵探针实验的无置分子轨道轨道。具体而言,我们测量了瞬时激发电子的全部动量空间分布。因为在分子中,此动量空间分布与轨道形状紧密相关,所以我们的实验提供了观察到时间和空间中超快电子运动的特殊可能性。这使我们能够将他们激发的状态动态与特定的真实空间激发途径联系起来。
Frontier orbitals, i.e., the highest occupied and lowest unoccupied orbitals of a molecule, generally determine molecular properties, such as chemical bonding and reactivities. Consequently, there has been a lot of interest in measuring them, despite the fact that, strictly speaking, they are not quantum-mechanical observables. Yet, with photoemission tomography a powerful technique has recently been introduced by which the electron distribution in orbitals of molecules adsorbed at surfaces can be imaged in momentum space. This has even been used for the identification of reaction intermediates in surface reactions. However, so far it has been impossible to follow an orbital's momentum-space dynamics in time, for example through an excitation process or a chemical reaction. Here, we report a key step in this direction: we combine time-resolved photoemission employing high laser harmonics and a recently developed momentum microscope to establish a tomographic, femtosecond pump-probe experiment of unoccupied molecular orbitals. Specifically, we measure the full momentum-space distribution of transiently excited electrons. Because in molecules this momentum-space distribution is closely linked to orbital shapes, our experiment offers the extraordinary possibility to observe ultrafast electron motion in time and space. This enables us to connect their excited states dynamics to specific real-space excitation pathways.