论文标题

实时控制的基于深度学习的不确定性分解

Deep Learning based Uncertainty Decomposition for Real-time Control

论文作者

Das, Neha, Umlauft, Jonas, Lederer, Armin, Beckers, Thomas, Hirche, Sandra

论文摘要

在未知环境中,数据驱动的控制需要清楚地了解所涉及的不确定性,以确保安全和有效探索。虽然在参数描述给定描述的情况下,通常可以明确地对测量噪声引起的不确定性,但很难对认知不确定性进行建模,这描述了训练数据的存在或不存在。当系统动态未知时,后者对于实施探索性控制策略特别有用。我们提出了一种使用深度学习检测训练数据的新方法,该方法可在$ 0 $(表明低不确定性)和$ 1 $(表明高不确定性)之间连续有价值的标量输出。我们利用该检测器作为认知不确定性的代理,并表明了它在合成和现实世界数据集的现有方法上的优势。我们的方法可以直接与不存在的不确定性估计结合在一起,并可以实时进行不确定性估计,因为该推理与不确定性建模的现有方法不同。我们进一步证明了这种不确定性估计在部署在线数据有效控制对模拟四轮驱动器的实用性。

Data-driven control in unknown environments requires a clear understanding of the involved uncertainties for ensuring safety and efficient exploration. While aleatoric uncertainty that arises from measurement noise can often be explicitly modeled given a parametric description, it can be harder to model epistemic uncertainty, which describes the presence or absence of training data. The latter can be particularly useful for implementing exploratory control strategies when system dynamics are unknown. We propose a novel method for detecting the absence of training data using deep learning, which gives a continuous valued scalar output between $0$ (indicating low uncertainty) and $1$ (indicating high uncertainty). We utilize this detector as a proxy for epistemic uncertainty and show its advantages over existing approaches on synthetic and real-world datasets. Our approach can be directly combined with aleatoric uncertainty estimates and allows for uncertainty estimation in real-time as the inference is sample-free unlike existing approaches for uncertainty modeling. We further demonstrate the practicality of this uncertainty estimate in deploying online data-efficient control on a simulated quadcopter acted upon by an unknown disturbance model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源