论文标题

$ C_0 $ -SUM空间上的Bishop-Phelps-Bollobás财产

The Bishop-Phelps-Bollobás property on the space of $c_0$-sum

论文作者

Choi, Geunsu, Kim, Sun Kwang

论文摘要

本文的主要目的是在$ C_0 $ BANACH SPACES上研究Bishop-Phelps-Bollobás类型属性。除其他结果外,我们还表明,每当$ x $均匀地凸出,$ x $均(复杂)均匀的convex时,这对$(c_0(x),y​​)$都有bishop-phelps-bollobás属性(简而言之,bpbp)。我们还证明,每当$ x $均匀凸出且均匀平滑时,这对$(C_0(x),C_0(x))$具有双线性形式的BPBP。这些扩展了先前已知的结果,即每当$ y $均匀凸出时,$(c_0,y)$具有运营商的BPBP,而$(C_0,C_0)$具有双线性表单的BPBP。我们还可以在本地bpbp上获得一些结果,该结果称为$ \ mathbf {l} _ {p,p,p} $,用于运算符和双线性表单。

The main purpose of this paper is to study Bishop-Phelps-Bollobás type properties on $c_0$ sum of Banach spaces. Among other results, we show that the pair $(c_0(X),Y)$ has the Bishop-Phelps-Bollobás property (in short, BPBp) for operators whenever $X$ is uniformly convex and $Y$ is (complex) uniformly convex. We also prove that the pair $(c_0(X),c_0(X))$ has the BPBp for bilinear forms whenever $X$ is both uniformly convex and uniformly smooth. These extend the previously known results that $(c_0,Y)$ has the BPBp for operators whenever $Y$ is uniformly convex and $(c_0,c_0)$ has the BPBp for bilinear forms. We also obtain some results on a local BPBp which is called $\mathbf{L}_{p,p}$ for both operators and bilinear forms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源