论文标题

三角形和四面体网格上的双旋转方程的混合有限元元素

A family of mixed finite elements for the biharmonic equations on triangular and tetrahedral grids

论文作者

Hu, Jun, Ma, Rui, Zhang, Min

论文摘要

本文介绍了一个新的混合有限元素系列,用于在两个维度和三个维度中求解Biharmonic方程的混合配方。在Sobolev space $ h({{\ rm {div}} \ bm {div},ω; \ mathbb {s})$同时与位移$ u $ in $ l^{2}(2} $Ω同时,对称应力$ \bmσ= - \bmσ= - \bmσ= - \bmσ= - \bmσ= - \bmσ= - \bmσ= - \bmσ源于$ h(\ bm {div},ω; \ mathbb {s})$符合元素的元素。 $ h(\ bm {div},ω; \ mathbb {s})$ h(\ bm {div})上的$ \ bm {div} \bmσ$的连续性。继承使基础功能易于计算。 $ U $的离散空间由分段$ p_ {k-2} $多项式组成,而无需任何连续性。这种混合有限元在三角形和四面体网格上以$ k \ geq 3 $稳定,并实现了最佳的收敛顺序。此外,还显示了超级融合和后处理结果。提供了一些数值实验来证明理论分析。

This paper introduces a new family of mixed finite elements for solving a mixed formulation of the biharmonic equations in two and three dimensions. The symmetric stress $\bmσ=-\nabla^{2}u$ is sought in the Sobolev space $H({\rm{div}}\bm{div},Ω;\mathbb{S})$ simultaneously with the displacement $u$ in $L^{2}(Ω)$. Stemming from the structure of $H(\bm{div},Ω;\mathbb{S})$ conforming elements for the linear elasticity problems proposed by J. Hu and S. Zhang, the $H({\rm{div}}\bm{div},Ω;\mathbb{S})$ conforming finite element spaces are constructed by imposing the normal continuity of $\bm{div}\bmσ$ on the $H(\bm{div},Ω;\mathbb{S})$ conforming spaces of $P_{k}$ symmetric tensors. The inheritance makes the basis functions easy to compute. The discrete spaces for $u$ are composed of the piecewise $P_{k-2}$ polynomials without requiring any continuity. Such mixed finite elements are inf-sup stable on both triangular and tetrahedral grids for $k\geq 3$, and the optimal order of convergence is achieved. Besides, the superconvergence and the postprocessing results are displayed. Some numerical experiments are provided to demonstrate the theoretical analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源