论文标题
中国大陆的COVID-19大流行的空间扩散模式的多重尺度缩放分析
Multifractal scaling analyses of the spatial diffusion pattern of COVID-19 pandemic in Chinese mainland
论文作者
论文摘要
揭示空间流行的空间扩散中时空的规律性有助于防止和控制流行病的传播。基于县级城市的实时COVID-19数据集,本文致力于探索Covid-19大流行的空间扩散模式的多型缩放及其在中国大陆的演化特征。使用ArcGIS技术和盒子计数方法来提取空间数据,并使用基于重新定位概率(MIU-Weight方法)的最小平方回归来计算分形参数。结果表明,中国Covid-19大流行的多重分裂分布。广义相关维频谱是逆S形曲线,但是当力矩顺序q << 0时,分形维度值显着超过了嵌入空间的欧几里得尺寸。局部奇异性光谱是不对称的单峰曲线,偏向向右。分形尺寸生长曲线显示为准S形曲线。从这些频谱和生长曲线中,可以得出主要结论,如下所示:首先,在Covid-19流行过程中开发的自相似模式,这似乎是由多重尺度缩放定律主导的。其次,整个中国的共vid-19的空间模式的特征是全球聚类和局部无序扩散。第三,中国共同-19的空间扩散过程经历了四个阶段,即初始阶段,快速扩散阶段,分层扩散阶段以及最后的收缩阶段。这项研究表明,多重分子理论可以用于表征COVID-19大流行的时空扩散,并且该案例分析可能具有启发性地探索空间扩散的自然定律。
Revealing spatiotemporal evolution regularity in the spatial diffusion of epidemics is helpful for preventing and controlling the spread of epidemics. Based on the real-time COVID-19 datasets by prefecture-level cities, this paper is devoted to exploring the multifractal scaling in spatial diffusion pattern of COVID-19 pandemic and its evolution characteristics in Chinese mainland. The ArcGIS technology and box-counting method are employed to extract spatial data and the least square regression based on rescaling probability (miu-weight method) is used to calculate fractal parameters. The results show multifractal distribution of COVID-19 pandemic in China. The generalized correlation dimension spectrums are inverse S-shaped curves, but the fractal dimension values significantly exceed the Euclidean dimension of embedding space when moment order q<<0. The local singularity spectrums are asymmetric unimodal curves, which slant to right. The fractal dimension growth curves are shown as quasi S-shaped curves. From these spectrums and growth curves, the main conclusions can be drawn as follows: First, self-similar patterns developed in the process of COVID-19 pandemic, which seem be dominated by multifractal scaling law. Second, the spatial pattern of COVID-19 across China can be characterized by global clustering with local disordered diffusion. Third, the spatial diffusion process of COVID-19 in China experienced four stages, i.e., initial stage, the rapid diffusion stage, the hierarchical diffusion stage, and finally the contraction stage. This study suggests that multifractal theory can be utilized to characterize spatio-temporal diffusion of COVID-19 pandemic, and the case analyses may be instructive for further exploring natural laws of spatial diffusion.