论文标题

从宇宙天元素和超新星类型IA数据的能量动量平方重力的限制

Constraints on Energy Momentum Squared Gravity from cosmic chronometers and Supernovae Type Ia data

论文作者

Ranjit, Chayan, Rudra, Prabir, Kundu, Sujata

论文摘要

在这项工作中,我们对能量动量平方重力模型进行了观察数据分析。从模型中获得了物质密度的可能解决方案,并研究了它们的宇宙学含义。一些最近的观察数据用于使用统计技术来限制模型参数。我们在我们的研究中使用了Cosmic Chronometer和Sne Type-IA Riess(292)$ H(Z)-Z $数据集。与数据集一起,我们还使用了Baryon声学振荡(BAO)峰值参数和宇宙微波背景(CMB)峰参数来获得模型参数的边界。已经执行了具有上述参数的数据的联合分析以获得更好的结果。对于统计分析,我们使用了$χ^{2} $统计的最小化技术。使用此工具,我们限制了模型的自由参数。自由参数的预测值以$ 66 \%$,$ 90 \%$ $和$ 99 \%$ $置信度的水平生成了信心轮廓。最后,我们将我们的分析与Amanullah等人,2010年和最近发表的万神殿数据样本提出的Union2数据样本进行了比较。最后,通过将灰尘添加到具有状态方程$ W = -1/3 $的一般宇宙流体中,研究了多组分模型。研究了密度参数,并发现其值符合观察结果。

In this work we perform an observational data analysis on the energy momentum squared gravity model. Possible solutions for matter density are obtained from the model and their cosmological implications are studied. Some recent observational data is used to constrain model parameters using statistical techniques. We have used the cosmic chronometer and SNe Type-Ia Riess (292) $H(z)-z$ data-sets in our study. Along with the data-sets we have also used baryon acoustic oscillation (BAO) peak parameter and cosmic microwave background (CMB) peak parameter to obtain bounds on the model parameters. Joint analysis of the data with the above mentioned parameters have been performed to obtain better results. For the statistical analysis we have used the minimization technique of the $χ^{2}$ statistic. Using this tool we have constrained the free parameters of the model. Confidence contours have been generated for the predicted values of the free parameters at the $66\%$, $90\%$ and $99\%$ confidence levels. Finally we have compared our analysis with the union2 data sample presented by Amanullah et al.,2010 and the recently published Pantheon data sample. Finally a multi-component model is investigated by adding dust to a general cosmological fluid with equation of state $w=-1/3$. The density parameters were studied and their values were found to comply with the observational results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源