论文标题
通过Chebyshev多项式进行光谱过滤的快速网格数据增强
Fast Mesh Data Augmentation via Chebyshev Polynomial of Spectral filtering
论文作者
论文摘要
深度神经网络最近被认为是计算机视觉和医学图像分析中强大的学习技术之一。受过训练的深层神经网络需要推广到以前从未见过的新数据。在实践中,通常没有足够的培训数据,并且可以使用扩展来扩展数据集。尽管图形卷积神经网络(Graph-CNN)已被广泛用于深度学习,但缺乏增加图形或表面数据的增强方法。这项研究提出了两种无偏的增强方法:拉普拉斯 - 贝特拉米特征功能数据增强(LB-EIGDA)和Chebyshev多项式数据增强(C-PDA),以生成表面上的新数据,它们的平均值与真实数据的平均值相同。 LB-EIGDA通过重新采样LB系数增强数据。与LB-EIGDA并行,我们引入了一种快速增强方法C-PDA,该方法在表面上采用LB光谱过滤器的多项式近似。我们通过Chebyshev多项式近似设计LB光谱带通滤波器,并通过这些过滤器过滤的重新样品信号,以生成表面上的新数据。我们首先通过模拟数据验证LB-EIGDA和C-PDA,并证明它们用于提高分类精度。然后,我们利用阿尔茨海默氏病神经影像学计划(ADNI)的大脑图像和提取皮质表面表示的皮质厚度,以说明两种增强方法的使用。我们证明,增强皮质厚度的模式与真实数据相似。其次,我们表明C-PDA比LB-EIGDA快得多。最后,我们表明C-PDA可以提高图形CNN的AD分类精度。
Deep neural networks have recently been recognized as one of the powerful learning techniques in computer vision and medical image analysis. Trained deep neural networks need to be generalizable to new data that was not seen before. In practice, there is often insufficient training data available and augmentation is used to expand the dataset. Even though graph convolutional neural network (graph-CNN) has been widely used in deep learning, there is a lack of augmentation methods to generate data on graphs or surfaces. This study proposes two unbiased augmentation methods, Laplace-Beltrami eigenfunction Data Augmentation (LB-eigDA) and Chebyshev polynomial Data Augmentation (C-pDA), to generate new data on surfaces, whose mean is the same as that of real data. LB-eigDA augments data via the resampling of the LB coefficients. In parallel with LB-eigDA, we introduce a fast augmentation approach, C-pDA, that employs a polynomial approximation of LB spectral filters on surfaces. We design LB spectral bandpass filters by Chebyshev polynomial approximation and resample signals filtered via these filters to generate new data on surfaces. We first validate LB-eigDA and C-pDA via simulated data and demonstrate their use for improving classification accuracy. We then employ the brain images of Alzheimer's Disease Neuroimaging Initiative (ADNI) and extract cortical thickness that is represented on the cortical surface to illustrate the use of the two augmentation methods. We demonstrate that augmented cortical thickness has a similar pattern to real data. Second, we show that C-pDA is much faster than LB-eigDA. Last, we show that C-pDA can improve the AD classification accuracy of graph-CNN.