论文标题

微观细粒实例分类通过深度注意

Microscopic fine-grained instance classification through deep attention

论文作者

Fan, Mengran, Chakrabort, Tapabrata, Chang, Eric I-Chao, Xu, Yan, Rittscher, Jens

论文摘要

具有有限样品的微观图像数据的细粒度分类是计算机视觉和生物医学成像中的一个开放问题。基于深度学习的视觉系统主要涉及大量的低分辨率图像,而生物医学图像中的微妙细节则需要更高的分辨率。为了弥合这一差距,我们提出了一个简单而有效的深层网络,该网络以端到端的方式同时执行两个任务。首先,它利用一个封闭的注意模块,该模块可以专注于高分辨率的多个关键实例,而无需额外的注释或区域建议。其次,将全局结构特征和本地实例特征融合为最终图像级分类。结果是一个强大但轻巧的端到端可训练的深网,可以产生最先进的结果,从而产生了两个单独的细粒度多粒子生物医学图像分类任务:一个基准测试乳腺癌癌症组织学数据集和我们的新真菌Mycology Dataset。此外,我们通过可视化学习特征与临床相关特征的一致性来证明所提出的模型的解释性。

Fine-grained classification of microscopic image data with limited samples is an open problem in computer vision and biomedical imaging. Deep learning based vision systems mostly deal with high number of low-resolution images, whereas subtle detail in biomedical images require higher resolution. To bridge this gap, we propose a simple yet effective deep network that performs two tasks simultaneously in an end-to-end manner. First, it utilises a gated attention module that can focus on multiple key instances at high resolution without extra annotations or region proposals. Second, the global structural features and local instance features are fused for final image level classification. The result is a robust but lightweight end-to-end trainable deep network that yields state-of-the-art results in two separate fine-grained multi-instance biomedical image classification tasks: a benchmark breast cancer histology dataset and our new fungi species mycology dataset. In addition, we demonstrate the interpretability of the proposed model by visualising the concordance of the learned features with clinically relevant features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源