论文标题

沙龙:共享在线活动序列汇总

Sharon: Shared Online Event Sequence Aggregation

论文作者

Poppe, Olga, Rozet, Allison, Lei, Chuan, Rundensteiner, Elke A., Maier, David

论文摘要

流系统评估事件序列聚合查询的大量工作负载。最新的方法遭受了长期延迟,这是由于不共享类似查询的中间结果和在聚集之前构建事件序列而引起的。为了克服这些限制,我们共享的在线事件序列汇总(Sharon)方法共享多个查询之间的中间聚合物,同时避免了昂贵的事件序列构造。我们的沙龙优化器面临两个挑战。第一,共享决定并不总是有益的。第二,共享决定可能排除其他共享机会。为了指导我们的沙龙优化器,我们将共享候选人,他们的收益和候选人之间的冲突编码为沙龙图。基于图表,我们将查找最佳共享计划的问题映射到最大重量独立集(MWIS)问题。然后,我们将贪婪算法的保证权重解决MWIS问题,以修剪我们共享计划查找器的搜索而无需牺牲其最优性。与最先进的方法相比,Sharon Optimizer的共享计划可产生高达18倍的加速计划。

Streaming systems evaluate massive workloads of event sequence aggregation queries. State-of-the-art approaches suffer from long delays caused by not sharing intermediate results of similar queries and by constructing event sequences prior to their aggregation. To overcome these limitations, our Shared Online Event Sequence Aggregation (Sharon) approach shares intermediate aggregates among multiple queries while avoiding the expensive construction of event sequences. Our Sharon optimizer faces two challenges. One, a sharing decision is not always beneficial. Two, a sharing decision may exclude other sharing opportunities. To guide our Sharon optimizer, we compactly encode sharing candidates, their benefits, and conflicts among candidates into the Sharon graph. Based on the graph, we map our problem of finding an optimal sharing plan to the Maximum Weight Independent Set (MWIS) problem. We then use the guaranteed weight of a greedy algorithm for the MWIS problem to prune the search of our sharing plan finder without sacrificing its optimality. The Sharon optimizer is shown to produce sharing plans that achieve up to an 18-fold speed-up compared to state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源