论文标题

C最佳拓扑组

C-Minimal topological groups

论文作者

Xi, Wenfei, Shlossberg, Menachem

论文摘要

我们研究所有封闭亚组(完全)最小的拓扑组,我们称之为C-(完全)最小的组。我们表明,局部紧凑的C微连接组是紧凑的。使用霍尔和库拉蒂拉卡的著名定理,以及由于粗暴和赫尔福特的特征,我们证明了C最低限度的本地可解决的谎言组是紧凑的。结果表明,如果一个拓扑组$ g $包含紧凑的开放式亚组$ n $,则$ g $在且仅当$ g/n $ h $ heradity上是不可遗传的,而$ g $是最小的。此外,必须紧凑的一个完全可溶解或强覆盖的C-量最小的组。反对Dikranjan和Megrelishvili的一个问题,我们发现一个完全不紧凑的谎言群体完全可解决(甚至是Metabelian)的谎言群体。我们还证明,$ a \ times f $是c-(完全)最小的(分别)最小的Abelian Group $ a $ a $和每个有限的集团$F。$。

We study topological groups having all closed subgroups (totally) minimal and we call such groups c-(totally) minimal. We show that a locally compact c-minimal connected group is compact. Using a well-known theorem of Hall and Kulatilaka and a characterization of a certain class of Lie groups, due to Grosser and Herfort, we prove that a c-minimal locally solvable Lie group is compact. It is shown that if a topological group $G$ contains a compact open normal subgroup $N$, then $G$ is c-totally minimal if and only if $G/N$ is hereditarily non-topologizable. Moreover, a c-totally minimal group that is either complete solvable or strongly compactly covered must be compact. Negatively answering a question by Dikranjan and Megrelishvili we find, in contrast, a totally minimal solvable (even metabelian) Lie group that is not compact. We also prove that the group $A\times F$ is c-(totally) minimal for every (respectively, totally) minimal abelian group $A$ and every finite group $F.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源