论文标题

FairMixRep:自制的强大表示学习,用于与公平限制的异质数据

FairMixRep : Self-supervised Robust Representation Learning for Heterogeneous Data with Fairness constraints

论文作者

Chakraborty, Souradip, Verma, Ekansh, Sahoo, Saswata, Datta, Jyotishka

论文摘要

在具有数值和分类类型的混合变量的异质空间中的表示形式学习由于其复杂的特征歧管而引起了有趣的挑战。此外,在无监督的设置中具有特征学习,没有类标签和合适的学习损失功能,这增加了问题的复杂性。此外,学习的表示和后续的预测不应反映对某些敏感群体或属性的歧视行为。提出的特征图应保留数据中存在的最大变化,并且相对于敏感变量需要公平。在工作的第一阶段,我们提出了一个有效的编码器框架,以捕获混合域信息。我们工作的第二阶段着重于通过增加相关的公平约束来消除混合空间表示。这样可以确保在保证公平预测之前和之后的表示之间的信息损失最小。最终表示的信息内容和最终表示的公平方面均已通过几个指标验证,这些指标表现出了出色的性能。我们的工作(FairMixRep)从无监督的角度解决了混合空间公平代表性学习的问题,并学习了一种及时,独特和新颖的研究贡献的普遍表示。

Representation Learning in a heterogeneous space with mixed variables of numerical and categorical types has interesting challenges due to its complex feature manifold. Moreover, feature learning in an unsupervised setup, without class labels and a suitable learning loss function, adds to the problem complexity. Further, the learned representation and subsequent predictions should not reflect discriminatory behavior towards certain sensitive groups or attributes. The proposed feature map should preserve maximum variations present in the data and needs to be fair with respect to the sensitive variables. We propose, in the first phase of our work, an efficient encoder-decoder framework to capture the mixed-domain information. The second phase of our work focuses on de-biasing the mixed space representations by adding relevant fairness constraints. This ensures minimal information loss between the representations before and after the fairness-preserving projections. Both the information content and the fairness aspect of the final representation learned has been validated through several metrics where it shows excellent performance. Our work (FairMixRep) addresses the problem of Mixed Space Fair Representation learning from an unsupervised perspective and learns a Universal representation that is timely, unique, and a novel research contribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源