论文标题
乳腺组织病理学图像的导管癌的基于深度学习的分级
Deep Learning-Based Grading of Ductal Carcinoma In Situ in Breast Histopathology Images
论文作者
论文摘要
导管癌原位(DCIS)是一种非侵入性乳腺癌,可以发展为浸润性导管癌(IDC)。研究表明,DCI经常过度治疗,因为DCIS病变的相当一部分可能永远不会发展为IDC。低年级病变的进展速度和风险较低,可能允许治疗降低。然而,研究表明DCIS分级的观察者间变化显着。自动图像分析可以提供一个客观的解决方案,以解决病理学家对DCI的高度主观性。 在这项研究中,我们开发了一个基于深度学习的DCIS分级系统。它是使用来自59名患者的1186个DCIS病变的数据集中的三名专家观察者的共识DCIS等级开发的。通过二次加权Cohen的Kappa衡量的观察者协议用于评估系统并将其性能与专家观察者的性能进行比较。我们对50名患者的1001个病变的独立检查集对病变级和患者级别观察者的一致性进行了分析。 平均达到的深度学习系统(DL)与观察者(O1,O2和O3)达成略高的一致性($κ_{O1,DL} = 0.81,κ_{O2,DL} = 0.53,κ__{O3,DL} = 0.40 $) κ_{O1,O3} = 0.50,κ_{O2,O3} = 0.42 $)在病变级别。在患者级别上,深度学习系统达到了与观察者的一致性($κ_{O1,dl} = 0.77,κ_{O2,dl} = 0.75,κ_{O3,DL} = 0.70 $) κ_{O1,O3} = 0.75,κ_{O2,O3} = 0.72 $)。 总之,我们开发了一个基于深度学习的DCIS分级系统,该系统的性能与专家观察员类似。我们认为,这是第一个可以通过对DCIS等级提供强大且可重现的第二意见来帮助病理学家的自动化系统。
Ductal carcinoma in situ (DCIS) is a non-invasive breast cancer that can progress into invasive ductal carcinoma (IDC). Studies suggest DCIS is often overtreated since a considerable part of DCIS lesions may never progress into IDC. Lower grade lesions have a lower progression speed and risk, possibly allowing treatment de-escalation. However, studies show significant inter-observer variation in DCIS grading. Automated image analysis may provide an objective solution to address high subjectivity of DCIS grading by pathologists. In this study, we developed a deep learning-based DCIS grading system. It was developed using the consensus DCIS grade of three expert observers on a dataset of 1186 DCIS lesions from 59 patients. The inter-observer agreement, measured by quadratic weighted Cohen's kappa, was used to evaluate the system and compare its performance to that of expert observers. We present an analysis of the lesion-level and patient-level inter-observer agreement on an independent test set of 1001 lesions from 50 patients. The deep learning system (dl) achieved on average slightly higher inter-observer agreement to the observers (o1, o2 and o3) ($κ_{o1,dl}=0.81, κ_{o2,dl}=0.53, κ_{o3,dl}=0.40$) than the observers amongst each other ($κ_{o1,o2}=0.58, κ_{o1,o3}=0.50, κ_{o2,o3}=0.42$) at the lesion-level. At the patient-level, the deep learning system achieved similar agreement to the observers ($κ_{o1,dl}=0.77, κ_{o2,dl}=0.75, κ_{o3,dl}=0.70$) as the observers amongst each other ($κ_{o1,o2}=0.77, κ_{o1,o3}=0.75, κ_{o2,o3}=0.72$). In conclusion, we developed a deep learning-based DCIS grading system that achieved a performance similar to expert observers. We believe this is the first automated system that could assist pathologists by providing robust and reproducible second opinions on DCIS grade.